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Chapter 1

Basics

This chapter serves as an introduction to a few basic elements that will be
needed troughout the course. We begin by reviewing basic families of functions
like linear functions, polynomials and trigonometric functions, as well as some
of their properties. Afterwards we will look at some elementary calculus on
those types of functions.
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CHAPTER 1. BASICS 4

1.1 Essential Functions
A function is a rule that relates to sets of quantities, the inputs and the outputs.
Each input x is deterministially related to an output f(x). For example, f(x)
might temperature on day x, or the firing rate of a neuron in response to a
stimulus x. Thus, functions can be used as mathematical models of processes
in which one quantity is transformed into another in a deterministic way. Even
when the process of transformation is not deterministic, usually an underlying
deterministic process corrupted by random noise can be used. In the example
above, the firing rate of the neuron could be f(x) + %, where % is a noise-
term. In contrast to a deterministic function, f(x) + % denotes a whole set of
values for a given x since the random term % can take different values for each
trial. Therefore, f(x) + % is not a function in the strict sense. The reason is
that, functions—by definition—are rules how to assign elements x of one set to
unique elements f(x) of another set. Only if the target elements are unique, the
assignment rule is called function. When defining a function, we have to specify
the two sets between the function is mapping and the rule that transforms an
element of the target set to an element of the input set. For example, if we want
to define a function f that is transforming elements of a set A into elements of
a set B according to the rule r, we would write this as

f : A → B

a 7→ r(a).

Here, a is an element of A (written a ∈ A) and r(b) is an element of B (i.e.
r(b) ∈ B). The set A is usually called domain of f while B is called the co-
domain of f . The arrow “→” is used to denote the mapping between the two
sets, while “ 7→” denotes the mapping from an element of the domain to an
specific element of the co-domain. This means that “→” tells us what kind of
objects are mapped into another and “ 7→” specifies the assignment rule.

The rule r can be anything that can be done with elements of A. For
example, if the function f simply doubles any real number, we would write

f : R→ R
x 7→ 2 · x x ∈ R.

In most cases, the inputs and outputs of function will be numbers, but this
does not necessarily have to be the case (i.e. the elements of the domain A and
the co-domain B do not need to be numbers).

Although, in principle, there are infinitely many functions on the real num-
bers, knowing only a few of them is usually enough to get along well in most
natural sciences. The reason is that most complex functions are built by adding,
multiplying, or composing simpler ones. It is important that you get comfort-
able with those simper functions since they are your toolbox to understand and
build more complex functions. Once you have and intuition how those simple
functions behave, it is often not too difficult to get a feeling for a more compli-
cated one. In this section we will review the most important simple functions
and present their most important properties.
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1.1.1 Polynomials and Powers
Polynomials is a very common class of functions. The two most widely known
kinds of polynomials are the parabola f(x) = x2 and the more general quadratic
function f(x) = ax2+bx+c. In general, polynomials consist of a sum of positive
integer powers k of x with coefficients ak:

f(x) = anx
n + ...+ a1x+ a0.

The single terms in the sum are called monomials. The degree of the polynomial
is the largest exponent of its monomials. The polynomial above has a degree of
n. Polynomials have nice properties like e.g. the derivatives and anti-derivatives
of polynomials are easy to calculate and yield polynomials again. One frequent
use of polynomials is to approximate any function at a certain location. This
approximation is called Taylor-Expansion. We will discuss the Taylor-Expansion
and many properties of polynomials in later chapters.

This is a good point to introduce the notation for sums over several elements:
Instead of indicating the entire sum by three dots “ ...” we use the greek uppercase
letter sigma Σ (like sum) to indicate a sum over all terms directly after the sigma.
These terms are usually indexed and the range of the index is written below and
above the Σ. Since x0 = 1 for all x ∈ R we write the polynomial from above as

f(x) = anx
n + ...+ a1x+ a0

=

n∑
k=0

akx
k.

While polynomials have exponents k ∈ N0 (where N0 denotes the set of natural
number including 0), exponents can in principle be in R as well. There are two
most important cases: when the exponent is negative and when it is a rational
number (i.e. a number that can be written as a fraction). A negative exponent
of a number is merely a shortcut for x−a = 1

xa . In many cases, for example when
calculating derivatives, the notation with negative exponent is useful. A fraction
in the exponent is another way of writing roots. For example the square root√
x is equivalently written as x

1
2 . In general, the nth root of x can be written

as n
√
x = x

1
n .

We conclude this section by stating a few calculation rules for powers for
x, a ∈ R. You should know all of them by heart and be able to use them
effortlessly.
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Calculation Rules for Powers
The following rules apply to any x, a ∈ R:

1. Anything to the power of zero is one: x0 = 1

2. Multiplying two terms with the same basis is equivalent to adding their
exponents: xa · xb = xa+b

3. Dividing two terms with the same basis is equivalent to subtracting their
exponents: xa

xb
= xa · x−b = xa−b

4. Exponentiating a term is equivalent to multiplying its exponents: (xa)b =
xa·b

5. A special case of rule 3. is given by 1
xa = x−a

6. The ath root of x is given by a
√
x = x

1
a for x ≥ 0.

1.1.2 Linear Functions
Linear functions are among the simplest functions one can imagine. You can
imagine a linear function as a line (plane, or hyperplane) through the origin.
Algebraically, their key property is that the function value of a sum x + y of
elements x, y equals the sum of their function values f(x) + f(y).The same is
true for multiples of input elements, i.e. the function value of some multiple a ·x
of an element x from the domain is the multiple of the function value a · f(x).
If any function fulfills these two properties, it is linear by definition.

Definition (Linear Function) A function f : R → R is said to be linear if
it fulfills the following two properties:

f(x+ y) = f(x) + f(y) for all x, y ∈ R (1.1)
f(a · x) = a · f(x) for all a, x ∈ R. (1.2)

♦

These properties have remarkable consequences. While for general functions,
a single input-output pair of values (x, f(x)) does not tell anything about the
value of the function at other locations y 6= x, a single such pair is enough to
know the value of a linear function at any location: Assume we are given the
input-output pair (x, f(x)) and we know that f is linear. In order to calucate
the value of f at another location y, we search for a scalar a that scales x into
y, i.e. y = a · x. Clearly, this scalar is easy is given by a = y

x . Once we know a,
we can compute f(y) via

f(y) = f(a · x)

= a · f(x).
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Example (Mathematical Modelling of Receptive Fields) For some neu-
rons, it is often assumed that their responses, i.e. the spike rate r(x), depends
linearly on the stimulus x.

Assume our cell responds to a visual image I1 with a spike rate of r1 = 20
spikes per second and to another image I2 with r2 = 60 spikes per second.
What spike rate would we expect to the mean of I1 and I2, if our neuron was
truely linear in the stimuli? The answer is easy to calculate. Let r : I → R
denote the function from images (denoted by I) to spike rate. We already know
r(I1) = r1 = 20 sps and r(I2) = ν2 = 60 sps . Then the response to the mean of
the two images is

r

(
1

2
I1 +

1

2
I2

)
= r

(
1

2
I1

)
+ r

(
1

2
I2

)
=

1

2
r(I1) +

1

2
r(I2)

=
1

2
r1 +

1

2
r2

= 10
sp

s
+ 30

sp

s

= 40
sp

s

This property does not only hold for two input stimuli. It holds for an arbitrary
number of stimuli. If the rate function r realized of our neuron is linear, then
response to the mean of n images is just the mean response to the single images.

r

(
1

n

n∑
k=1

Ik

)
=

1

n

n∑
k=1

r (Ik)

=
1

n

n∑
k=1

νk

Question: ?
Of course, real neurons are not truly linear. If a neuron was indeed linear, for
inputs, this would lead to some very unrealistic conclusions. Name two of them!

Answer:

For some stimuli, the spike rate would be negative. Also, for stimuli with very
high input, the spike-rate would be arbitrarily large, i.e. the neuron’s rate would
not saturate.

C

1.1.3 Trigonometric Functions
Trigonometric functions are functions of an angle ϑ. The most common trigono-
metric functions are sin(ϑ), cos(ϑ), tan(ϑ) and cotan(ϑ).
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In general, there are two natural ways to think about trigonometric func-
tions: the geometrical view quantities and the periodic signal view.

1.1.3.1 The geometric view

In the geometric view, cos(ϑ) and sin(ϑ) represent the x-coordinate and the
y-coordinate of a point on the intersection between a circle with radius one
centered at the origin, and a line through the origin that encloses an angle of ϑ
with the x-axis. In this view, tan(ϑ) and cotan(ϑ) have a natural interpretation
as well, namely the length of the line, touching the circle, between the upper
leg of the angle and the x-axis or the y-axis, respectively. Alternatively, tan(θ)
is the ratio between the x−and the y−coordinate (see Figure 1.1).

ϑ x

y

︸ ︷︷ ︸
cos(ϑ)

︸︷
︷︸

si
n

(ϑ
)

︸
︷︷

︸
ta

n
(ϑ

)

︷ ︸︸ ︷cotan(ϑ)

︸ ︷︷ ︸
r=1

Figure 1.1: Geometrical view of sin(ϑ), cos(ϑ), tan(ϑ) and cotan(ϑ). For a given
angle ϑ, (cos(ϑ), sin(ϑ)) are the coordinates of the point on the intersection
between a circle of radius r = 1 and the upper leg of the angle. tan(ϑ) is
the length of the line between the x-axis and the upper leg of the angle, that
”touches” the unit circle (therefore the name tangens from lat. tangere = to
touch). cotan(ϑ) is defined analogoulsy for the line touching the circle from
above.

Example (Path Integration) The term path integration denotes the ability
of moving organisms (such as ants) to remember the direction and length of
the vector to its home while moving in the environment. We will now just
look at a special case of updating the home vector in world coordinates, i.e. a
global fixed coordinate system. This means that the home base is assigned the
coordinates (0, 0) and the moving organism stores its position according to a
global coordinate frame.
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Imagine you are an ant living in a completely flat world. For the sake of
simplicity we further imagine that you have a compass and you know the length
of your steps, so that you can measure the angles you turn and the distance you
walked. Now imagine that you already explored your environment for a while
and that you are now standing at position (xt, yt) looking along the x-axis. If
you know turn by an angle of ϑt and move into the new direction by a distance
of rt, what is your new position (xt+1, yt+1)?

(xt, yt)

(xt+1, yt+1)

ϑt︸ ︷︷ ︸
rt cos(ϑt)

︸
︷︷

︸
r t

si
n

(ϑ
t
)

︷
︸︸

︷
r t

x

y

Looking again at figure 1.1 and the figure above shows that the new direction
in which you are walking is (cos(ϑt), sin(ϑt)). Since you are walking along that
direction for a distance of rt, the total displacement is r · (cos(ϑt), sin(ϑt)). If
we add this displacement to the old position, we get the new position

(xt+1, yt+1) = (xt, yt) + rt · (cos(ϑt), sin(ϑt))

C

Due to the geometrical property of sin(ϑ) and cos(ϑ) we can derive a very
useful equality by employing Pythagoras theorem.

Theorem (Pythagoras) For a right angle triangle with side lengths a, b and
c, where c is the length of the longest leg, while the legs with length a and b
enclose an angle of 90◦ (or π

2 in radians), the following equality holds:

a2 + b2 = c2

♦

In the case of sin(ϑ) and cos(ϑ), we know the value of c for any given ϑ. It
is simply c = 1, since the point p = (cos(ϑ), sin(ϑ)) lies on the circle of radius
r = 1. Therefore, we know that

cos(ϑ)2 + sin(ϑ)2 = 1

for all angles ϑ.
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There is another useful equality that we can read of figure 1.1. Assume
we want to know the scaling factor s that transforms sin(ϑ) into tan(ϑ), i.e.
sin(ϑ) · s = tan(ϑ). From looking at figure 1.1 we know that it is the same
scaling factor that scales cos(ϑ) into 1, i.e. cos(ϑ) · s = 1. In this case, s is easy
to calculate: It is simply s = 1

cos(ϑ) . Therefore we have found a formula how to
calculate tan(ϑ) from sin(ϑ) and cos(ϑ):

tan(ϑ) =
sin(ϑ)

cos(ϑ)
.

In an analogous manner we can also derive the equality

cotan(ϑ) =
cos(ϑ)

sin(ϑ)
.

Since tan(ϑ) and cotan(ϑ) can be written in terms of a quotient, the radius of
the circle does not even have to be one. Assume we want to know the tangens
between the x-axis and the leg (0, p) for a point p = (x, y) that lies on a circle
with radius r. Since we can write p equivalently as p = (x, y) = r·(cos(ϑ), sin(ϑ))
for an appropriate value of r, we have that

y

x
= r·sin(ϑ)

r·cos(ϑ) = tan(ϑ).

Therefore, tan(ϑ) is simply the quotient of the opposite leg and the adjacent leg
of a right angle triangle. Similarily we can get

x

y
= r·cos(ϑ)

r·sin(ϑ) = cotan(ϑ).

Further, sine and cosine can also be defined in terms of quotients for circles with
an arbitrary radius. According to the intercept theorem the ratio of cos(ϑ) to 1
is equal to the ratio of x to r for every point p = (x, y) on a circle wirh radius
r. Equally, the ratio of sin(ϑ) to 1 is equal to the ratio of y to r. Therefore, we
get

sin(ϑ) =
y

r

cos(ϑ) =
x

r

Other useful properties that can also be read off from the geometric view.
Among them are the symmetry properties of sin(ϑ), cos(ϑ), tan(ϑ) and cotan(ϑ):

cos(−ϑ) = cos(ϑ)

sin(−ϑ) = − sin(ϑ)

tan(−ϑ) = − tan(ϑ)

cotan(−ϑ) = −cotan(ϑ)

Sometimes we do not want to compute the sine or cosine of an angle but
the angle itself. For example, we take point p = (x, y) and want to know what
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the angle between the x-axis and the line from the origin to p is. We know that
tan(ϑ) = y

x , but what is ϑ? To solve for ϑ, we need the inverse trigonometric
functions. For every trigonometric function there is an inverse trigonometric
function: arccos(x), arcsin(x), arctan(x), arccotan(x). In some texts they are
confusingly written as cos−1(ϑ) whereas cos(ϑ)−1 means 1/cos(ϑ), so you should
always use the arc-notation. Now, by using the arctan function we can compute
the angle between p and the x-axis as ϑ = arctan( yx ).

Remark There are two units for measuring angles which are commonly used
and get quite often mixed up: radians and degrees. A full circle of 360◦ cor-
responds to 2π radians. In computer programs, the default unit is radians.
Therefore to compute the sine of 45◦ one has to compute sin(π/4). Likewise if
you computed an angle by using arccos(x) your output is in radians. To convert
from radians to degrees, you have to multiply your result by 180

π and similarly
converting from degrees to radians by multiplying with π

180 .

C

1.1.3.2 The Periodic Signal View

The periodic signal view of thinking about sin(ϑ) and cos(ϑ) is especially use-
ful when dealing with signals such as e.g. membrane potentials of neurons
or stripes of natural images. It is also closely related to techniques such as
Fourier- or Spectral Analysis, which are indispensable tools for the analysis of
neurophysiological signals. In order to get from the geometric to the periodic
signal view, just imagine a point on the unit circle that is moving with constant
speed counterclockwise along the circle. If we plot the time t against the point’s
x-coordinate x(t) = cos(ϑ(t)), we get a strongly periodic function. Same applies
to the y-coordinate y(t) = sin(ϑ(t)). Figure 1.2 shows the graphs of the two
functions. For the moment we wrote ϑ as a function of time in order to be able
to say that the point is moving with constant speed. The faster the point is
moving along the circle the more cycles we can get in one fixed time interval.
This is expressed by the frequency ω of the sine or cosine, respectively. It tells
us how many cycles our point does in one unit time interval. We can therefore
equivalently write x(t) = cos(ω · t) and y(t) = sin(ω · t). From now on we will
drop the dependence on time. The frequency then tells us how many cycles of
our point fit in the interval [0, 2π].

Example (Sine and Cosine Gratings) Assume that you want measure
the orientation selectivity a V1-cell you are recording from with an electrode. A
simple experiment would be to present gratings with different orientations and
varying amount of bars in one unit interval, i.e. different spatial frequency. The
most common way of producing such patterns is to use sine and cosine gratings.
Figure 1.3 shows such a grating.

Since an image can be seen as a function,that assigns a graylevel value to
each pixel (f(x)is the gray value of pixel x) those gratings are simply sine or
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Figure 1.2: cos(ωt) (left) and sin(ωt) (right) in the interval of t ∈ [−2π, 2π] with
a frequency of ω = 1.

cosine functions over R2. In order to get to the graylevel values at the different
pixels, the function is discretized, i.e. is only evaluated at certain locations that
correspond to the pixels. At the moment we shall only look at how to produce
vertical or horizontal gratings. We will see how to produce gratings of arbitrary
orientation later.

For a vertical grating, we know that the graylevel value along the vertical axis
must be constant. If I(x, y) denotes the function that represents the image, i.e.
the functions that assigns a graylevel value to a position (x, y), we can produce
a vertical grating by I(x, y) = sin (ωx). Instead of using the sine we could as
well have used the cosine function. A horizontal grating can be generated in
exactly the same way by replacing x by y inside the sine function. Here is the
matlab code to produce a horizontal grating of frequency ω = 2:

>> [X,Y] = meshgrid([-2*pi:0.01:2*pi]); % get the sample points
>> omega = 2; % set the frequency
>> imagesc(sin(omega*X)) % display grating
>> colormap(gray) % set colormap to gray values
>> axis off % switch off the axes

At the moment all our gratings have a fixed contrast, since−1 ≤ sin(x), cos(x) ≤
1 for all x ∈ R. However, we can vary the contrast by varying the ampli-
tude of the sine. This is done by premultiplying an appropriate scaling factor
I(x, y) = A · sin (ωx). In order to build that into the matlab code above, you
must specify the maximum and the minimum gray value when calling the func-
tion imagesc, since it automatically scales the gray values otherwise

>> [X,Y] = meshgrid([-2*pi:0.01:2*pi]); % get the sample points
>> omega = 2; % set the frequency
>> A = 3; % set the contrast
>> maxA = 10; % set maximal contrast
>> imagesc(A*sin(omega*X),[-maxA,maxA]) % display grating
>> colormap(gray) % set colormap to gray values
>> axis off % switch off the axes

C
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Figure 1.3: Example of a vertical sine grating with a spatial frequency of approx.
8Hz along the x-axis. The graylevel value at each position (x, y) is given by
I(x, y) = sin(50 · x).

Up to now we saw how to control the frequency and the amplitude of sine
and cosine functions. In order to complete this subsection we will also see how
to shift the sine and the cosine functions along the x-axis. Let us look at a sine
function with a certain frequency sin(ωt). At t = 0 also sin(ωt) = 0. If we want
to shift the sine function along the x-axis by an offset of φ, we must ensure
that the shifted version is zero at t = φ and not at t = 0. However, this will
be the case, if we subtract φ from the argument of the sine. Therefore, a sine
that is shifted by an offset of φ along the x-axis is given by sin(λt− φ). Cosine
functions are shifted in exactly the same way. This offset φ is called phase of
the signal. Now we are able to write down the general form of a sine or cosine
signal with a given amplitude A and phase φ: It is

A · sin(ωt− φ) and A · cos(ωt− φ).

Before finishing this section about trigonometric functions we just want to men-
tion two equalities that are useful when calculating with sine and cosine. These
equalities are called the Addition Theorems.

Theorem (Addition Theorems) The following equalities hold for all x, y ∈
R:

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y)

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y)

♦
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Using the symmetry properties of sin(x) and cos(x) one can also derive
similar expressions for cos(x− y) and sin(x− y).

Exercise E
Write down the the corresponding expressions for cos(x− y) and sin(x− y) .

C

Important Rules for Trigonometric Functions
The following rules apply to any x, y, ϑ ∈ R:

• Pythagoras’s Theorem: cos(ϑ)2 + sin(ϑ)2 = 1

• Symmetry Properties:

cos(−ϑ) = cos(ϑ)

sin(−ϑ) = − sin(ϑ)

tan(−ϑ) = − tan(ϑ)

cotan(−ϑ) = −cotan(ϑ)

• Addition Theorems

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y)

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y)

1.1.4 The e-function and the Logarithm
1.1.4.1 The Exponential Function

The exponential or e-function f(x) = ex = exp(x) is one of the most frequently
occurring and important function in the everyday life of a natural scientist.
The number denoted by “e” is an irrational number called Euler’s number. Its
first digits are e ≈ 2.7183. You should remember the approximate value of its
inverse 1

e ≈ 0.37 because it is used to define time constants of neural signal
transduction.

The exponential function appears in many probability distribution in statis-
tics, in solution of differential equations and will appear in many mathematical
model of neural processes. The exponential function has some very nice prop-
erties. One of them is that it is its own derivative f ′(x) = (ex)

′
= ex.

The following examples show three cases, in which the exponential function
naturally occurs.

Examples

1. One central probability density in statistics is the Normal or Gaussian

Distribution N (µ, σ) = 1√
2πσ2

e−
(x−µ)2

2σ2 . In many experiments that involve
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noisy measurements, the noise is assumed to be Gaussian with mean µ =
0. One possible justification for this assumption is that sums of random
quantities with other probability distributions tend to be Gaussian if the
total number of this quantities increases. Since we think of the noise in an
experiment as the superposition of many other processes that we are not
interested in, the assumption that there are a large number of them which
are linearly superimposed motivates the Gaussian noise assumption.
Apart from that, the Gaussian distribution is frequently used because it
has a lot of properties that make it possible to calculate analytical solutions
of the respective statistical problems.

2. The potential change ∆Vm(t) over time at a passive neuron membrane
after applying a rectangular current pulse can be described by the following
equation

∆Vm(t) = ImR
(

1− e− t
τ

)
.

Figure 1.4: Potential change ∆Vm(t) (solid line) over time at a passive neuron
membrane after applying a rectangular current pulse (dashed line) [Figure from
[1]].

Figure 1.4 shows the time course of the potential. Here Im is the current,
that has been injected, R is the membrane resistance and τ is the time
constant of the membrane. It tells us how fast the membrane potential
follows the rectangular pulse. The greater τ is, the longer it takes until
∆Vm(t) = ImR, where ImR is the potential change induced by injecting
the current Im. In some sense τ defines a time scale for that membrane.
τ is the time needed until the potential change reaches 0.63 · ImR =
(1 − 0.37)·ImR = (1 − 1

e )ImR, i.e. 63% of the potential change induced
by the rectangular pulse. One can show that τ = RC, where C is the
membrane capacitance, i.e. its ability to buffer charge.



CHAPTER 1. BASICS 16

0 2 4 6 8 10
time [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty

k=1, 
�
=1

k=1, 
�
=2

k=1, 
�
=0.5

k=3, 
�
=1

Figure 1.5: Poisson Process with 4 different sets of parameters.

3. A simple stochastical model for spike generation by a neuron is the Poisson
Process. In this model, time is divided into a large number of bins. In
each bin a spike occurs with probability p independent of whether a spike
occurred in the bin before or not. If p is sufficiently small and the average
spiking rate is λ, the probability of observing exactly k spikes in a time
window of length ∆t is given by the distribution of the Poisson Process
with rate λ:

P (k,∆t) =
e−λ∆t(λ∆t)k

k!
.

Figure 1.5 gives an example how a Poisson Process looks like for different
sets of parameters. The symbol expression ”k!” denotes the factorial func-
tion k! = k · (k − 1) · ... · 2 · 1. We can use a notation similar to the Σ for
sums to denote a product of several components: The uppercase Greek
letter Π (for product) denotes a product of all elements following it. The
indices are written in the same way as for sums (see also Appendix 3.1).
Therefore, we can write the factorial function as k! =

∏k
n=1 n.

4. If a spike train is generated by a Poisson Process, then the distribution of
the inter-spike-intervals (ISIs) is an exponential distribution. That is, if
we observe a spike at time 0, then the probability (density) of observing
the next spike at time s is given by p(s) = µe−µs, for µ = 1/λ in the
example above.

C

1.1.4.2 Logarithms

Logarithms and their derivatives often occur in statistics. Estimating the pa-
rameters of a statistical model is often done via maximum likelihood estimation.
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This involves taking the derivative of the log of the likelihood function.
Here we introduce logarithms. More advanced examples will be discussed in

later chapters. For now, we start with a small example:

Example In this example, we look again at the time course of the mem-
brane potential after the application of a rectangular current pulse ∆Vm(t) =

ImR
(

1− e− t
τ

)
. Assume that we want to measure the time constant of a cer-

tain membrane. For this purpose we excited the membrane with a rectangular
current pulse and measured ∆Vm(t) at several points tk, k = 1, ..., n in time.
Now we want to solve ∆Vm(t) = ImR

(
1− e− t

τ

)
for τ at each time step tk and

get n values τk that we average to get your final estimation τ̂ = 1
n

∑n
k=1 τk of

the membrane’s time constant. How do we solve for τk? The first step is easy:
You rearrange the the terms to get

∆Vm(t) = ImR
(

1− e−
t
τk

)
⇔ ImR−∆Vm(tk) == ImR · e−

tk
τk

⇔ ImR−∆Vm(tk)

ImR
= e
− tkτk .

Now we somehow have to extract − tk
τk

from the exponent. This means that you
are searching for a number a, such that ea = ImR−∆Vm(tk)

ImR
. This is exactly the

definition of the natural logarithm ln(x): It is the number that you have to put
in the exponent of e in order to obtain x. Now you can solve for τ :

ImR−∆Vm(tk)

ImR
= e
− tkτk ⇔ ln

(
ImR−∆Vm(tk)

ImR

)
= − tk

τk

⇔ −
ln
(
ImR−∆Vm(tk)

ImR

)
tk

=
1

τk

⇔ − tk

ln
(
ImR−∆Vm(tk)

ImR

) = τk

C

We just saw that the natural logarithm is the function that cancels the
exponential function, i.e. ln(ex) = eln(x) = x. In general, a function g that
cancels another function f is called inverse function of f and is denoted by
g = f−1. Not all functions have inverses. Some of them only have an inverse on
a restricted range. We will discuss inverse function in more detail in the chapter
about analysis.

So far we have seen how to solve ex for x by using the natural logarithm.
What if we want to solve an equation like 2x for x? Here we cannot use the
natural logarithm since ln(x) is only the inverse function of e, not 2. Here we
must use a logarithm that fits to 2. This logarithm is denoted by log(x) and
has the property that 2log(x) = log(2x) = x. In general there is a logarithm for
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any number b that is the inverse of the function f(x) = bx. The number b is
called base of the logarithm. If the base is not b = 2 or b = e, we indicate the
base in the subscript of logb(x). However, the only frequently used logarithms
are log(x) = log2(x) and ln(x) = loge(x).

Remark It happens quite often that the base of of the logarithm is not spec-
ified, either because it does not matter or it is clear from the context. In this !
case, the notation log(x) is usually used. Usually this means that the base is
e (e.g. Physics), sometimes it means that the base is 2 (e.g. in Information
Theory) and sometimes it is used for base 10 (e.g. Economics). In the remain-
ing part of the script we simply use log(x) to denote any logarithm. The base
should always be clear from the context or it does not matter. If we want to
emphasize a certain base we will write it in the subscript or use the explicit
notation ln(x) = loge(x) or lg(x) = log10(x).

C

There is a neat trick how to calculate logarithms of arbitrary bases by using
logarithms of another base:

logb(x) =
ln(x)

ln(b)
=

log(x)

log(b)
.

Until now we skipped an important detail of logarithms. When only dealing
with real numbers, the logarithm is only defined on the strictly positive part of
R. We denote this set by R+. The reason for this restriction is easy to see. If we
remember that logb x is the number that has to be put in the exponent of b in
order to obtain x. If x is negative, there can generally be no such real number
since bx is positive. (The concept of logarithm can be extended to negative and
imaginary numbers, but does lead to some complications, so we will not cover
it here.)

We conclude this section with a few calculation rules. Most of them follow
directly from the calculation rules of powers or the definition of the logarithm.

Calculation Rules for Logarithms
The following rules apply to any logarithm:

• logb(b
x) = x

• logb(x · y) = logb(x) + logb(y) for x, y ∈ R+

• logb

(
x
y

)
= logb(x)− logb(y) for x, y ∈ R+

• logb(x) = ln(x)
ln(b) = log(x)

log(b) for x, b ∈ R+

• logb(x
y) = y · logb(x) for x ∈ R+, y ∈ R
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1.1.5 Lines (Affine Functions)
Most people think about lines when they think about linear functions. However,
lines are not generally linear functions. Only the lines that include the origin
are strictly speaking linear functions. Lines versions of linear functions that are
shifted along the y-axis. The general equation for a line is

f(x) = mx+ t,

where m is called the slope of f . It is the first derivative or, equivalently, the
amount about f changes if we increase x by one, i.e. m = f(x + 1) − f(x).
The value of t determines the y coordinate of the point where f cuts through
the y-axis. This can easily been seen by evaluating f at x = 0. Obviously, the
function value f(0) = t must be the location on the y-axis where f hits it.

From the general form of lines we can also see why they are not strictly
linear if t 6= 0. If they were linear, f(x + y) = f(x) + f(y) would have to hold
for all x, y ∈ R. However, it is easy to check that this is not the case:

f(x) + f(y) = mx+ t+my + t

= m(x+ y) + 2t

6= m(x+ y) + t

= f(x+ y).

Therefore, lines with t 6= 0 are not linear. But we can always make them linear
by subtracting t. This yields a line with the same slope m, which is shifted
along the y-axis such that it cuts through (0, 0), which make it a truly linear
function.

Functions of the form f(x) = mx+ t are also called affine functions.

1.1.6 Piecewise Defined Functions
Sometimes, it is convenient to define a function by using two or more other
functions. This is useful if we want to change the behaviour of the function on
certain parts of the domain. Achieving a certain behaviour with a single expres-
sion might be difficult. It is then usually easier to use an several expressions,
one for each part of the domain. These functions are called piecewise defined
functions. We just mention a few important examples here.

Examples

1. The Heaviside function is defined as:

f(x) =

{
0 x ≤ 0
1 x > 0

.

2. The absolute value is given by

f(x) =

{
−x x ≤ 0
x x > 0
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3. The maximum-function is defined as

f(x, y) =

{
y x ≤ y
x x > y

C

Piecewise defined functions can for example be used to define a more realistic
model of neurons.

Example: Neurons that are linear over some range.

Earlier, we saw that neurons are linear for some stimuli x, but clearly not for
all: Firstly, the firing rate of a neuron can not be negative, and secondly, there
is a maximal firing rate that can not be exceeded. Let us suppose that a neuron
responds to a one-dimensional stimulus x with firing rate f(x).

f(x) =

 0 x < 0
x 0 ≤ x ≤ fmax

fmax x > fmax

C

Piecewise functions are just like any other function. Within each interval, the
functions can be differentiated and integrate like other functions. Nevertheless,
there is some care needed at the points at which the intervals meet. In particular,
it is often (but not always) the case that piecewise functions are not continuous
of differentiable at these points.

1.1.7 Sketching Functions
Nowadays, computers are around almost everywhere allowing us to plot func-
tions whenever needed. Nevertheless, being able to imagine how functions look
like and sketch them is a useful ability because it gives us a better intuition
for what those functions do. There are some simple tricks for imagining and
drawing functions which we briefly present in this section. They can basically
be classified into two categories. The first is for functions that are transforma-
tions of certain basic functions which one usually knows by, like the exponential
function, sine and cosine function or easy polynomials like the parabola. The
second is for functions that are compositions of known basis functions.

1.1.7.1 Adapting Functions

Everyone knows how to sketch the parabola f(x) = x2: It is opened upwards,
symmetric, equals one for x = ±1 and diverges to infinity for x → ±∞. But
what about the function f(x) = − 1

2 (x− 2)2 + 5? We will see that it is easy to
adapt f(x) = x2 to make it look like f(x) = − 1

2 (x− 2)2 + 5. The first question,
we have to answer, is in which order we want to introduce the changes to x2 to
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Figure 1.6: Different steps of transforming f(x) = x2 into f(x) = − 1
2 (x−2)2+5.

transform it into − 1
2 (x − 2)2 + 5. The answer is: We do that in exactly that

order in which we would compute the result of − 1
2 (x − 2)2 + 5. This means,

we first subtract 2, then square the result, then premultiply − 1
2 and finally add

5. If we would not do that we would end up with a different function since we
would violate calculation rules at some point in the process.

So let us start to transform x2. You can follow the different steps graphically
in Figure 1.6.As we just mentioned, the first step is to transform x2 into (x−2)2.
Here, we get our first rule: The graph of f(x − a) is simply the graph of f(x)
shifted by a to the right. Of course, if a is negative, shifting by a becomes a
shift to the left. Why is that the case? If you think about it, x − a can also
be seen as shifting the whole x-axis by −a, i.e. a to the left. This, however, is
equivalent to shifting f to the right by a. Applied to your example, this means
that we have to shift x2 to the right by 2 in order to obtain the graph of (x−2)2.

The next step is to include the factor − 1
2 . We already know the graph of

(x− 2)2, how does the graph of − 1
2 (x− 2)2 look like? Well, premultiplying −1

surely reflects the graph along the x-axis. The factor 1
2 squeezes the result. For

example, y-values that used to be −1 are now − 1
2 , y-values that used to be −2

are now −1, and so on.
Now, we are almost there. The last step is to include the additive constant

+5. This is easy: It simply shifts the graph of − 1
2 (x− 2)2 upwards by 5. This

is it! We arrived at the graph of − 1
2 (x − 2)2 + 5 by a few simple adaptation

rules for the graph of x2. With this few simple rules, you can already sketch a



CHAPTER 1. BASICS 22

decent amount of functions.

Rules for adapting functions
• The graph of f(x− a) is simply the graph of f(x) shifted by a.

• The graph of −f(x) is the graph of f(x) flipped along the x-axis.

• The graph of a · f(x) is the graph of f(x) stretched (a > 1) or squeezed
(0 ≤ a < 1) by a.

• The graph of f(x) + b is the graph of f(x) shifted by b along the y-axis.

1.1.7.2 Compositions of Functions

Sketching compositions of functions is a little bit more art, but for a lot of
examples it is not so difficult. As an example, we use the function f(x) =

exp
(
−(x− 2)2

)
which is just a nicer way of writing f(x) = e−(x−2)2

. The rules
from above are not sufficient to sketch this function. There is, however, one
rule that we can use: If we know the graph of f(x) = exp

(
−x2

)
, we know

that we arrive at f(x) = exp
(
−(x− 2)2

)
by shifting the graph to the right by

2. Therefore, we look at how to sketch the graph of f(x) = exp
(
−x2

)
in the

following.
The first step, you can always to is to check whether there are function values

which are easy to compute and help drawing the graph. Usually, it is a good
idea to look at the behavior of f(x) at x = 0, x = ±1 and what f(x) does if x
goes to ±∞. In our case, the interesting cases are x = 0 and x → ±∞. The
position x = 0 is interesting since anything to the power of 0 equals 1. Therefore
f(0) = 1. When we ask how f(x) behaves for x→ ±∞ we can first observe that
the behavior will be the same at both sides since the squaring operation cancels
out the sign. So let us look at what happens when x→∞. Let us advance step
by step, just as before. First, when x→∞, surely we will get x2 →∞ as well.
By that, we can immediately see that −x2 → −∞. Therefore, we only need to
know what happens to exp(z) if its argument z assumes a very large negative
value. We can rewrite the problem a bit by using one of the calculation rules
for exponentials: e−x = 1

ex . Now, the answer should be easy. If −x2 → −∞,
there will be a large value in the denominator and, therefore, f(x) = exp

(
−x2

)
will approach zero. We can even say a bit more, namely that it will approach
zero from above since exp(z) can never become negative if z ∈ R.

In a similar manner, you can sketch functions of the form f(x) = g(x)+h(x)

or f(x) = g(x)
h(x) . First, find a few points where the function value is easy to

compute. Then check what happens if x approaches points, where one of the
functions goes to zero or infinity. Then the question is usually, which of the
functions “wins”, i.e. which approaches zero or infinity faster. For example,
f(x) = x2 − x will definitely diverge to infinity for x → ∞ since x2 grows
much faster than −x is able to drag it into the negative side. Similarly f(x) =
x

exp(x) will approach zero for x → ∞ since exp(x) grows faster than x does.
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Drawing compositions of functions takes a bit of practice, but is a useful tool
for understanding how functions look like and what they do.
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1.2 Basic Calculus
In this section we will cover basic rules for calculating derivatives and simple
integrals. Along with introducing the different rules we will also introduce the
derivatives of all the functions covered in the section before. In order to keep
the equations simple, we will from now on leave out the brackets for functions
like sin, cos, log, ... as long as the argument of the function is clear from the
context.

1.2.1 Derivatives
The derivative f ′(x0) = df

dx (x0) (denoted with a “ ′”, df
dx , or

d
dxf) of a function

f(x) has two intuitive meanings:

1. It measures the rate of change of a function at a certain location x0.

2. It is the slope of the line touching the function f at a the point (x0, f(x0)).
This line is called tangent line or simply tangent.

Using the first intuition, f ′(x0) is an approximation of how the function value
of f(x) changes when going from x0 to x0 + 1. If f is a linear function, the
approximation will be exact, that means f will change exactly by f ′(x0). If f is
not linear we will make some error, but we still can use f ′(x) to construct the
best linear approximation of f at x0. But first, we will start with an example
of the exact case.

Example Consider the linear function f(x) = 3x. According to the first
intuition, the derivative f ′(x) is the rate of change of f , i.e. the change in
the function value of f divided by the change in the value of x. Consider two
arbitrary points x0 and x1. The rate of change is then given by:

f ′(x) =
f(x1)− f(x0)

x1 − x0

=
3x1 − 3x0

x1 − x0

=
3(x1 − x0)

(x1 − x0)

= 3.

Since any linear function can be written as f(x) = ax, we just showed
that the first derivative f ′(x) of a linear function does not depend on x. This
means that it is the same everywhere. This is what we expect intuitively from
a line. Secondly we verified the second intuition for linear functions. The first
derivative at a point x0 is the slope of the tangent line of f at (x0, f(x0)). Since
the tangent line is simply the linear function itself, the first derivative f ′(x) is
the slope of the linear function.
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Figure 1.7: Geometrical picture for calculating derivatives of linear functions.

C

The situation changes when we consider arbitrary functions f(x). In that
case the value of the rate of change, given by the quotient f(x1)−f(x0)

x1−x0
, will

depend on the choices of x1 and x0. This raises the question how we could
define the rate of change in a meaningful way? The second intuition can help us
here: In order to get the first derivative at a point x0 we approximate f(x) at
x0 with a line and define the first derivative to be its slope. Since we are merely
interested in computing the slope of that line, we do not need to compute the
full line equation but start with the slope right away. Remember, given a line
g(x) = ax+t, we can compute its slope via g(x1)−g(x0)

(x1−x0) = ax1+t−ax0−t
(x1−x0) = a where

x1 and x0 are two arbitrary points. Now imagine we have a line g(x) = ax+ t
that contains the two points (x0, f(x0)) and (x1, f(x1)) (see Figure 1.8). In
order to compute its slope we do not need the full line equation. Instead we can
simply use the quotient from above and compute

a =
g(x1)− g(x0)

x1 − x0

=
f(x1)− f(x0)

x1 − x0
.

The slope a of this line is not yet the first derivative since g contains (x0, f(x0))
and (x1, f(x1)). This means, that (in most cases) it will intersect with f and
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not touch it at (x0, f(x0)). However, we can achieve this goal by moving x1 close
to x0. Once it is infinitely, called infinitesimally, close to x0, a = f(x1)−f(x0)

x1−x0

will be the slope of the tangent line, i.e. a = f ′(x0). Mathematically this is
expressed in terms of a limit. We do not go into the details of limits here, but
merely demonstrate, how the derivative of a function f at x0 is defined. The
rate of change with a infinitesimal close point x1 = x0 + h can be written in
terms of limits as

f ′(x) = lim
h→0

f(

=x1︷ ︸︸ ︷
x0 + h)− f(x0)

h︸︷︷︸
=x1−x0

.

The ”lim” expresses that we let h come infinitesimally close to zero and therefore
x1 = x0 + h infinitesimally close to x0. The expression limh→0

f(x0+h)−f(x0)
h is

called differential quotient of f . Note that, in order to obtain a unique notion
of a derivative at a point x0, the direction from which x1 = x0 + h approaches
x0 should not matter. This means that h could be negative (x1 approaches x0

from the left) or positive (x1 approaches x0 from the right).

h1︷ ︸︸ ︷

f
(x

0
+
h

1
)−
f

(x
0
)

︷
︸︸

︷
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)
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y

Figure 1.8: Geometrical picture of the differential quotient for arbitrary func-
tions. As h becomes smaller, slope of the line through (x0, f(x0)) and
(x0 + h, f(x0 + h)) converges to the derivative of f at x0.

Looking at Figure 1.8, we can see that not every function has a derivative
at any point x0. If the function makes a step at x0 such that there is a gap
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between the function value at x0 and the function value at x0 plus or minus
an infinitesimal h, then the value of the differential quotient at x0 depends
on the direction from which x0 + h approaches x0 and the derivative would
not be unique. Therefore, functions are only differentiable at points where the
function does not make such a step. This property is expressed in the concept
of continuity.

Definition (Continuous Function) A function f is said to be continuous
at a point x0 if

lim
h→0

f(x0 + h) = lim
h→0

f(x0 − h) = f(x0),

i.e. if getting infinitesimal close to x0 (no matter from which side) implies
getting infinitesimal close to f(x0).

A function f is said to be continuous, if it is continuous in every point of its
domain.

♦

If a function is continuous, we can calculate the value of the differential
quotient limh→0

f(x0+h)−f(x0)
h . If the function is not continuous, the derivative

at that point is classified as not defined. In a similar fashion, functions that
have a kink at x0 give rise to an undefined derivative at x0. The reason is
that because of the kink approaching x0 from the left yields a different slope
than approaching x0 from the right. For example f(x) = |x| = abs(x) is not
differentiable at x0 = 0. At all other points, however, it is. We will see how to
differentiate f(x) = |x| in an example below.

However, if we can find a linear function that with its slope equal to the
value of the differential quotient, no matter if h approaches zero from the left
(h < 0) or from the right (h > 0), the function is called differentiable.

Definition (Differentiable Function) A function f is said to be differen-
tiable at a point x0 if there exists a linear function L(x) such that

L(x0)− lim
h→0

f(x0 + h)− f(x0)

h
= 0,

no matter from which side h approaches zero.
A function f is said to be differentiable, if it is differentiable in every point

of its domain.

♦

Fortunately, we do not need to go through the tedious process of calculating
the value of the differential quotient every time. There are easier ways to com-
pute the slope of the tangent at a point x0. In the following we will review the
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most important rules how to compute derivatives. In most cases those rules are
sufficient to compute derivatives of functions that you are dealing with.

We start with the simplest rule: Calculating the derivatives of powers. If
f(x) = axb, then the derivative of f is given by

f ′(x) = abxb−1.

As we can see, the rule is fairly easy: We just premultiply the exponent b,
subtract 1 from the exponent of x and leave the factor a untouched. Before
looking at a small example, we just introduce another rule: The derivative of a
sum equals the derivatives of the single terms:

f(x) = g1(x) + g2(x)⇒ f ′(x) = g′1(x) + g′2(x)

Or in general:

f(x) =

n∑
k=1

gk(x) ⇒ f ′(x) =

(
n∑
k=1

gk(x)

)′
=

n∑
k=1

g′k(x).

Here, gk are arbitrary differentiable functions.

Example Assume that f(x) = 1
2x

2 + 5x+ 10. In order to apply the rule, we
must rewrite the constant 10. Since we already know that x0 = 1 we can write
10 = 10x0 and f becomes f(x) = 1

2x
2 + 5x+ 10x0. Now we can apply our rules

step by step:

f ′(x) =

(
1

2
x2 + 5x+ 10x0

)′
=

(
1

2
x2

)′
+ (5x)′ + (10x0)′

= x+ 5.

As we can see, the last term vanishes since premultiplying 0 cancels the whole
term. Since we can write any constant b that does not depend on x as b = bx0,
constants always vanish when calculating the derivative.

C

We can generalize our example to arbitrary polynomials:

f(x) =

n∑
k=0

akx
k ⇒ f ′(x) =

n∑
k=1

akkx
k−1.

Note, that the index k of f ′(x) starts at one instead of zero. This is because
the last term a0x

0 = a0 vanishes when differentiating.
We can also use this rule to calculate the derivative of roots and ratios.
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Examples

1. Let f be f(x) =
√
x. Since we can write f as f(x) = x

1
2 , the derivative of

f is given by f ′(x) = 1
2x
− 1

2 = 1
2
√
x
.

2. Let f be f(x) = 1
xa . Since we can write f as f(x) = x−a, the derivative

is given by f ′(x) = −ax−a−1 = − a
xa+1

C

As those examples show, we can already calculate the derivative of a fair
amount of functions. However, so far we cannot differentiate functions that are
compositions of other functions. For example, we cannot get f ′(x) for function

f(x) =
√

1
2x

2 + 5x+ 10 with our current set of rules, since f(x) = g2(g1(x))

is the composition of g2(y) =
√
y and y = g1(x) = 1

2x
2 + 5x + 10. Therefore,

we introduce a new rule, called chain rule: Let f be f(x) = g2(g1(x)) with two
arbitrary differentiable functions g1 and g2, then the derivative f ′(x) is given
by

f ′(x) = g′2(g1(x)) · g′1(x).

According to this rule we first differentiate g2(y) while treating y = g1(x) as
a variable on its own. After that, we multiply the result with the derivative
g′1(x) of g1 with respect to g1. Let us illustrate this rule by differentiating

f(x) =
√

1
2x

2 + 5x+ 10.

Example Let f be f(x) =
√

1
2x

2 + 5x+ 10. As already mentioned before, f
is the composition of g2(y) =

√
y and y = g1(x) = 1

2x
2 + 5x + 10. We already

calculated the derivative of those functions:

g′2(y) =
1

2
√
y

g1(x) = x+ 5.

Applying the chain rule therefore yields

f ′(x) = g′2(g1(x)) · g′1(x)

=
1

2
√

1
2x

2 + 5x+ 10
· g′1(x)

=
1

2
√

1
2x

2 + 5x+ 10
· (x+ 5).

C



CHAPTER 1. BASICS 30

Now, there is only one rule left: How to differentiate products f(x) = g1(x) ·
g2(x) of two differentiable functions g1 and g2. If f is the product of two
functions g1 and g2, the derivative is given by

f ′(x) = g′1(x) · g2(x) + g1(x) · g′2(x).

This rule is called product rule. It tells us to first differentiate g1(x) and multiply
the result with g2(x), then do it the other way round and sum the results in the
end. Again, an example will illustrate this rule.

Example Let f be f(x) = (x+ 1)( 1
2x

2 + 5). Apparently, f is the product of
g1(x) = (x+ 1) and g2(x) = (1

2x
2 + 5). It is easy to calculate their derivatives:

g′1(x) = 1

g′2(x) = x.

Therefore, by applying the product rule we get the derivative of f :

f ′(x) = (x+ 1)′ ·
(

1

2
x2 + 5

)
+ (x+ 1) ·

(
1

2
x2 + 5

)′
=

1

2
x2 + 5 + (x+ 1)x

=
3

2
x2 + x+ 5.

In this particular case, we can check the rule by expanding

f(x) = (x+ 1)(
1

2
x2 + 5)

=
1

2
x3 +

1

2
x2 + 5x+ 5.

Using the rule for polynomials, yields:

f ′(x) =

(
1

2
x3 +

1

2
x2 + 5x+ 5

)′
=

3

2
x2 + x+ 5,

which is the same results as the one from the product rule.

C

In most cases, a fourth rule for differentiating quotients of functions is spec-
ified. However, we can derive the quotient rule from the rules we already know.
Before stating the general quotient rule, we look at a small example.
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Example Let f be f(x) = (x+1)

( 1
2x

2+5)
. For calculating the derivative of f we

reformulate it first into f(x) = (x + 1)( 1
2x

2 + 5)−1. Now we can apply the
product rule and the chain rule to differentiate f . Let us look at the calculation
step by step:

f ′(x)
Product Rule

= (x+ 1)′
(

1

2
x2 + 5

)−1

+ (x+ 1)

((
1

2
x2 + 5

)−1
)′

Chain Rule
= (x+ 1)′

(
1

2
x2 + 5

)−1

− (x+ 1)

(
1

2
x2 + 5

)−2(
1

2
x2 + 5

)′
=

(x+ 1)′(
1
2x

2 + 5
) − (x+ 1)

(
1
2x

2 + 5
)′(

1
2x

2 + 5
)2

=
(x+ 1)′( 1

2x
2 + 5)− (x+ 1)

(
1
2x

2 + 5
)′(

1
2x

2 + 5
)2

=
− 1

2x
2 − x+ 5(

1
2x

2 + 5
)2 .

C

In general, it might be easier to calculate all the derivatives first. In this
example, however, the derivatives were only resolved at the end to show an
important aspect: When looking at the fourth line of the calculation, we see
that it consists exclusively of terms that already appeared in the product. We
can generalize this, to get the quotient rule: Let f be a quotient of two functions
f(x) = g1(x)

g2(x) . By rewriting f(x) = g1(x) ·g2(x)−1 and applying the product rule,
the chain rule and the rule for powers, we arrive at

f ′(x) =
g′1(x)g2(x)− g1(x)g′2(x)

g2(x)2
.

Here is a summary of all the rules we just saw:
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Differentiation Rules

• Derivatives of constant functions: The derivative of any constant function
f(x) = a is f ′(x) = 0.

• Summation Rule: Let f(x) =
∑n
k=1 gk(x) a sum of arbitrary differentiable

functions. Then f ′(x) is given by:

f ′(x) =

n∑
k=1

g′k(x).

• Power Rule: Let f be f(x) = axb, then f ′(x) is give by:

f ′(x) = abxb−1.

• Chain Rule: Let f(x) = g2(g1(x)) be a composition of arbitrary differen-
tiable functions. Then f ′(x) is given by:

f ′(x) = g′2(g1(x)) · g′1(x).

• Product Rule: Let f(x) = g1(x)g2(x) be a product of arbitrary differen-
tiable functions. Then f ′(x) is given by:

f ′(x) = g′1(x) · g2(x) + g1(x) · g′2(x).

• Quotient Rule: Let f(x) = g1(x)
g2(x) be a quotient of two arbitrary differen-

tiable functions. Then f ′(x) is given by:

f ′(x) =
g′1(x)g2(x)− g1(x)g′2(x)

g2(x)2
.

We conclude this section by stating derivatives of important functions that you
cannot compute using the rules above. Since they occur quite often, you should
know them by heart.

Derivatives of important functions

• f(x) = sin(x)⇒ f ′(x) = cos(x)

• f(x) = cos(x)⇒ f ′(x) = − sin(x)

• f(x) = ex ⇒ f ′(x) = ex

• f(x) = ln(x) = loge(x)⇒ f ′(x) = 1
x
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Example

Let us calculate the derivative of a little bit more advanced case: f(x) = |x| =
abs(x). Figure 1.9 show the graph of the function.
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Figure 1.9: Graph of the function f(x) = |x|.

We can either use the definition of |x| as a piecewise defined function, or use
the fact that f(x) =

√
x2. In both cases the derivative is f ′(x) = −1 for x < 0

and f ′(x) = 1 for x > 0. But what happens at x0 = 0. If we use the piecewise
definition

|x| =
{
−x x ≤ 0
x x > 0

,

then the value of the differential quotient limh→0
|x0+h|−|x0|

h is −1 if we approach
x0 = 0 from the left (i.e. h < 0) and 1 if we approach x0 = 0 from the right
(i.e. h > 0). Since there cannot be a linear function which has the slope −1
and 1 at the same time, the derivative is not defined at x0 = 0. A similar thing

happens when we use |x| =
√
x2. Since

(√
x2
)′

= x√
x2

we cannot choose x to
be zero since this would make the denominator zero and the fraction would not
be defined. Therefore the derivative of f(x) = |x| is given by

f(x) =

 −1 x < 0
undefined x = 0

1 x > 0
.

C

Example

There is an easy numerical way to check and compute derivatives with matlab
based on the differential quotient:

f ′(x) = lim
h→0

f(

=x1︷ ︸︸ ︷
x0 + h)− f(x0)

h︸︷︷︸
=x1−x0

.
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The idea is that f(

=x1︷ ︸︸ ︷
x0 + h)−f(x0)

h︸︷︷︸
=x1−x0

already sufficiently approximates f ′(x) for re-

ally small h. This means, that you choose at a set of closely spaced points
x1, ..., xi, xi+1, ..., xn and compute the function values f(x1), ..., f(xi), f(xi+1), ..., f(xn)

at those points and compute f ′(xi) ≈ f(xi+1)−f(xi)
xi+1−xi . Fortunately, there is a built-

in matlab function that takes the differences for you. Here is an example for
how to compute the numerical derivative of f(x) = sin(x):

>> h = .001; x = 0:h:2*pi; % define h and the base points
>> f = sin(x); % sample the function at x
>> df = diff(f)/h; % compute the differences
>> plot(x,f,’k’), hold on; % plot the function
>> plot(x(1:end-1),df,’r’); % plot the approximation
>> plot(x(1:end-1),cos(x(1:end-1)),’g’); % plot the true derivative

You surely noticed that we were only able to compute f ′(x) for all but the
last x. The reason is, that there is no xn+1 and f(xn+1) that we could have
used for computing f ′(xn). However, there is also a little more involved matlab
function that computed the derivatives at all base points. Using that function
the example becomes:

>> h = .001; x = 0:h:2*pi; % define h and the base points
>> f = sin(x); % sample the function at x
>> dfdh = gradient(f,h); % compute the first derivative
>> plot(x,f,’k’), hold on; % plot the function
>> plot(x,dfdh,’r’); % plot the approximation
>> plot(x,cos(x),’g’); % plot the true derivative

You can (and should) use this function to check derivatives that you com-
puted analytically.

C

1.2.2 Higher-Order Derivatives
The term higher-order derivatives comprises the result of iterated differentiation.
Since we can treat f ′(x) as a function on its own, there is really nothing new
here. If f ′(x) is differentiable, then f(x) twice differentiable. This can be
extended to higher-orders: The third order derivative which is written f ′′′(x) or
sometimes f (3)(x) is just the derivative of the second order derivative.

The second derivative, however, has a special meaning. Geometrically, it
is the slope of the slope, i.e. how do the linear approximations at f(x) vary
with x. This give us a notion of curvature of f(x). Intuitively, if the linear
approximations at f(x0) bend away very quickly in the area around x0, then
f(x) must have a high curvature at x0.
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The geometric intuition behind higher-order derivatives is somewhat harder.
In particular, our visual system is not very good at judging higher-order deriva-
tives. By visual inspection, it is pretty hard to say if e.g. the fourth derivative
is positive or negative.

Example

Suppose that the function f(t) is the position of an object in space at time t.
Then, f ′(t) gives us the rate at which the object changes its position, i.e. the
object’s speed at time t. The second order derivative f ′′(t) gives us the rate
at which the object changes its speed, which is simply the acceleration of the
object. Similarly, if f(t) is the concentration of Ca2+-ions in a neuron at time
t, then f ′(t) gives you the rate at which ions enter or leave the cell at time t,
and f ′′(t) indicates whether this rate is getting bigger or smaller.

C

1.2.3 Finding Maxima/Minima of a Function
Derivatives can be used to find global minima or maxima of functions. If f(x)
has a local maximum or minimum at a point x0, the tangent line is horizon-
tal. This means that the slope of the tangent and, therefore, the derivative of
the function at that point x0 must be f ′(x0) = 0. Mathematically speaking,
f ′(x0) = 0 is a necessary condition for the function f having a maximum or a
minimum, i.e. “x0 is maximum/minimum” ⇒f ′(x0). However, it can happen,
that f ′(x0) = 0 but not x0 is not a maximum or a minimum. Those points
are called saddle-points. They arise for example, when f(x) increases, becomes
more and more flat when approaching x0, is completely flat at x0, and increases
again afterwards. Therefore, since f ′(x0) = 0 does not imply a maximum or
a minimum, we must find a condition that does that, i.e. we need to find a
sufficient condition, one for which “condition”⇒“x0 is maximum/minimum”.

Since we already know that we only need to look at points x0 where f ′(x0) =
0, we can think about what must happen for x0 to be—say—a maximum. If
x0 is a maximum, then the slope of tangent lines of points to the right of x0

must become more and more negative. At the same time the slope of tangent
lines at points left to x0 must become less and less negative and approach zero
at x0. If you think about it, this is exactly the same as requiring f ′′(x0) < 0.
Similarly, f ′(x0) = 0 and f ′′(x0) > 0 imply a minimum of f at x0. If f ′(x0) = 0,
f ′′(x0) = 0, but f ′′′(x0) 6= 0 then f has a saddle-point at x0. In general, if the
first n derivatives are zero and the (n+ 1)th derivative f (n+1)(x0) is not equal
to zero, then x0 is a minimum, if n+ 1 is even and f (n+1)(x0) > 0, a maximum
if n + 1 is even and f (n+1)(x0) < 0, and a saddle-point if n + 1 is odd and
f (n+1)(x0) 6= 0.
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Finding Maxima, Minima, and Saddle-Points
Let f be a (n+ 1) times differentiable function. Then f has a

• minimum at x0 if and only if f (k)(x0) = 0 for k = 1, ..., n and f (n+1)(x0) >
0 with (n+ 1) even.

• maximum at x0 if and only if f (k)(x0) = 0 for k = 1, ..., n and f (n+1)(x0) <
0 with (n+ 1) even.

• saddle-point x0 if and only if f (k)(x0) = 0 for k = 1, ..., n and f (n+1)(x0) 6=
0 with (n+ 1) odd.

It should be pointed out that this procedure only yields local maxima, and
not necessarily global ones.

Example

Consider the function f(x) = (x − 1)2. Then f ′(x) = 2(x − 1) and f ′′(x) = 2.
In order to find candidates for a maximum or a minimum, we set f ′(x) = 0 and
solve for x:

f ′(x) = 0 ⇔ 2(x− 1) = 2

⇔ x = 1.

Since f ′′(x) > 0 for all x (therefore also for x = 1), x = 1 must be a minimum
of f .

C

Example: Estimating the rate of a Poisson distribution

A probabilistic model for a neuron that generates completely random spike
trains with no temporal structure is the homogeneous Poisson process. Since
there is no temporal structure, it serves as a baseline model that other—more
advanced—models for spike trains can compare to. You can generate spike trains
from that model as follows: Bin the time axis into sufficiently small bins (say
1ms). For each bin you randomly place a spike with a certain small probability.
The matlab code looks like this

>> t = [0:0.001:10];
>> p = 0.05; % spiking probability in each bin
>> ind = find( rand(size(t)) <= p); % sample spike times
>> s = zeros(size(t)); % generate spike train
>> s(ind) = 1; % insert spikes
>> plot(t,s,’k’)

of observing k spikes in a time window of length ∆t = 1 is given by the Poisson
distribution

p(k spikes) =
λke−λ

k!
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or simply

p(k) =
λke−λ

k!
.

λ is called the rate of the Poisson distribution. It tells us how many spike we
expect in one second on average. The question that we want to solve in this
example is how to estimate λ from a number of observed spike trains. But lets
first look at our matlab example again and check, whether our spike counts in
one second really follow a Poisson distribution. For that reason, we generate a
large number of spike trains of length 1s, count the spikes in each spike train
and look at the empirical histogram. The matlab code looks like this:

>> t = [0:0.001:1];
>> p = 0.05; % probability of spike in each bin
>> m = 5000; % number of spike trains
>> U = rand(m,length(t));
>> S = zeros(size(U)); % generate spike train matrix (trains X time)
>> S(U <= p) = 1;
>> figure
>> imagesc(1-S); colormap gray;
>> xlabel(’time bins’); ylabel(’spike trains’)
>> figure, C = sum(S,2); % get spike counts
>> K = [1:max(C)];
>> hist(C,K); % plot histogram
>> hold on
>> lambda = p*length(t);
>> plot(K, m*poisspdf(K,lambda),’r’,’LineWidth’,2); hold off
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Figure 1.10: Poisson spikes with rate λ = 50.05.
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A typical output of the matlab code fragment is shown in Figure 1.10. Before
we see how to estimate λ from the data, let us first spend a thought about what
values we expect. The answer is not too difficult. Since we see a spike with
probability p = 0.05 in each bin, all bins are independent, we expect to see a
total number of λ = nbins ·p spikes per second where nbins is the number of bins
per second. Strictly speaking, the rate λ is defined as the number of bins times
the probability of spiking per bin in the limit of infinite nbins. The idea is, that
the larger the number of bins gets, the lower the probability of observing a spike
in a specific bin becomes, i.e. it goes to zero for nbins to infinity. Therefore, the
product of both number can be something finite, i.e. the rate λ.

Let us know turn to the question of how to estimate λ. Assume that you are
only given the number of spikes k1, ..., km in each of the spike trains of length
1s. Certainly you also do not know p. However, you do know (or do assume)
that the spikes have been generated as described above and therefore the spike
counts k must be Poisson distributed. We further assume that each spike train
has been generated independently of the others.

Given a distribution and a number of observations, one principled way of
estimating the parameters of that distribution (in our case the rate λ) is the
maximum likelihood method. The idea behind that method is simple: We choose
λ such that the probability of our observations is maximized:

λ̂ = argmaxλ∈R+p(k1, ..., km|λ).

Since we assumed that the observations are independent from each other, the
probability of observing all spike counts jointly, is the product of the probabili-
ties of observing each single spike count:

p(k1, ..., km|λ) =

m∏
i=1

p(ki|λ).

For each single spike count, we know that ki is Poisson distributed and therefore

p(k1, ..., km|λ) =

m∏
i=1

p(ki|λ)

=

m∏
i=1

λkie−λ

ki!
.

Now, we only need to find that maximum of f(λ) =
∏m
i=1

λkie−λ

ki!
with respect

to λ. Unfortunately, taking the derivative of f(λ) =
∏m
i=1

λkie−λ

ki!
is very com-

plicated. Luckily, there is a simple trick that we can apply: By taking the log
of both sides changes the function values, but leaves the position of the maxima
unchanged (the reason for that is, that log is a strictly increasing continuous
function). However, taking the log makes the right hand side considerably easier
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to deal with:

log f(λ) = log

(
m∏
i=1

λkie−λ

ki!

)

=

m∑
i=1

log
λkie−λ

ki!

=

m∑
i=1

(
log λki + log e−λ − log ki!

)
=

m∑
i=1

(ki log λ− λ− log ki!) .

Let us now compute the maximum of
∑m
i=1 ki log λ−λ− log ki!. For that reason,

we first compute the first derivative

d

dλ

(
m∑
i=1

ki log λ− λ− log ki!.

)
=

m∑
i=1

(
ki
d

dλ
log λ− d

dλ
λ− d

dλ
log ki!

)

=

m∑
i=1

(
ki

1

λ
− 1

)

= −m+
1

λ

m∑
i=1

ki.

Setting the first derivative to zero and solving for λ yields

−m+
1

λ

m∑
i=1

ki = 0 ⇔ 1

λ

m∑
i=1

ki = m

⇔ λ =
1

m

m∑
i=1

ki.

In order to check that it is really a maximum, we compute the second derivative

d

dλ

(
−m+

1

λ

m∑
i=1

ki

)
= − 1

λ2

m∑
i=1

ki.

Since rates are always positive (i.e. λ > 0) the second derivative is always
smaller than zero and, therefore, λ̂ = 1

m

∑m
i=1 ki is really a maximum. It also

has a very intuitive interpretation. The maximum likelihood estimate for the
rate of a Poisson distribution is the mean of the observed spike counts. In that
sense it is also not surprising, that the mean of a Poisson distribution is λ.

You should include the maximum likelihood estimate in the matlab example
from above and compare it to the expected rate λ = p·nbins. The code fragment,
you have to add, is:

>> lambda_est = mean(C);

C
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1.2.4 Approximating Functions Locally by Lines and Poly-
nomials

Example: Finding a linear approximation to the function sin(x) for x
near 0

Suppose f(x) = sin(x). If we want to approximate f(x) at x0 = 0 by a line, i.e.
a function of the form g(x) = wx + b, such that g(x) is a good approximation
for x near 0. From the definition of the derivative, we saw that the derivate
of a function at x0 is really the slope of a linear approximation of f(x) at x0.
Therefore we can just compute f ′(x) = cos(x) and evaluate it at x0 = 0. This
yields the value of w, since w if the derivative of g(x) and we want the derivatives
of the function f and its linear approximation g to be the same. In our case,

w = f ′(x0) = cos(0) = 1.

Now, we must ensure, that g(x0) = f(x0). We do that by adjusting b. The
offset b shifts the function horizontally. If we want g to have the same value at x0

as f , we just need to add f(x0). Therefore b = f(x0). Since f(x0) = sin(0) = 0,
we set b = 0 and get g(x) = wx as linear approximation of f(x) at x0. Figure
1.11 plots the linear approximation.

C
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f(x) = sin(x)
g(x) = x

Figure 1.11: Graph of the function f(x) = sin(x) and its linear approximation
g(x) = x at x0 = 0.

In the example, we implicitly used that the function is approximated at
x0 = 0 when computing the offset b. In general, if x0 6= 0, we cannot simply use
b = f(x0), since
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g(x0) = wx0 + b

= f ′(x0)x0 + f(x0)

6= f(xo) for w, x0 6= 0.

How can we compute the offset b in the general case x0 6= 0? We can answer
this question by some geometrical thoughts. First of all, imagine we set b = 0.
The approximating function g(x) = wx = f ′(x0) · x would be a true linear
function that had the same slope as f at x0 but not the same function value
g(x0) = wx0 6= f(x0). Since we know that b lifts g along the y-axis we need
to find out by how much we must lift it in order to obtain g(x0) = f(x0). The
answer is: We need to lift it by the difference between the true function value
f(x0) and the linear function g(x0) = wx0 that has the same slope but the wrong
offset, i.e. b = f(x0) − wx0. By substituting w = f ′(x0) and b = f(x0) − wx0

in the general line equation, we end up with

g(x) = f ′(x0)x+ f(x0)− f ′(x0)x0

= f(x0) + f ′(x0)(x− x0)

as the best “linear” approximation (it is not linear, is is a line) of f at x0.
The quality of the approximation depends, of course, on the properties of

f(x). Clearly, in the example above, the approximation is really bad for e.g.
x = π.

Example

The linear approximation to f(x) = ex at xo = 0 is given by

g0(x) = f(x) + f ′(xo)(x− xo)
= e0 + e0 · x
= 1 + x.

The approximation at xo = 1 is given by:

g1(x) = f(x) + f ′(xo)(x− xo)
= e1 + (x− 1) · e1

= xe.

Figure 1.12 shows the graphs of these functions.

C

As we can see in figure 1.12, the linear approximations to ex are not very
good. Can we find a better approximation by using a quadratic approximation,
i.e. one that uses a polynomial of degree 2?
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f(x) = exp(x)
g

0
(x) = 1+x

g
1
(x)=e⋅ x

Figure 1.12: Graph of the functions f(x) = exp(x) and its linear approximation
g0(x) = 1 + x and g1(x) = ex at x0 = 0 and x0 = 1.

The answer is yes. We simply add a quadratic term to our approximating
function g. So far g had the form g(x) = w(x − x0) + b. To turn it into an
quadratic approximation, we need to add a term, that is quadratic in (x− x0).
For reasons that will become clear soon this additional term is 1

2v(x − x0)2

yielding g(x) = 1
2v(x−x0)2 +w(x−x0) + b. The additional work we have to do

in comparison to a simple linear approximation is to determine the value of v.
Analogously to determining the value of w, the value of v is simply v = f ′′(x0).
By making this choice, we enforce that the value, the slope and the curvature of
g and f match at x0, i.e.

f(x0) = g(x0)

f ′(x0) = g′(x0)

f ′′(x0) = g′′(x0).

The reason why the quadratic term is multiplied with 1
2 is to cancel the

exponent 2 when taking the derivatives. It is an instructive exercise to check
that the function value and the first two derivatives really match at x0 for
w = f ′(x0) and v = f ′′(x0).

Example

For our example f(x) = ex, the best quadratic approximation is g(x) = 1 + x+
x2

2 .

C
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This example can be generalized to polynomials of arbitrary order. We can
find better local approximations by matching the (higher order) derivatives. If
we want to match the first three derivatives, then we have to use approximations
by a polynomial of degree 3, 4 and so on. It is a remarkable fact that any function
that is sufficiently differentiable can (locally) be approximated arbitrarily well
by polynomials:

Theorem (Taylor/MacLaurin)

For a differentiable function f and a x near x0, f(x) can be approximated by

f(x) ≈ f(x0) + (x− x0)f ′(x0) +
1

2
(x− x0)2f ′′(x0) +

1

6
(x− x0)3f ′′′(x0) + . . .

or in general

f(x) ≈ f(n)(x) =

n∑
k=0

1

k!
(x− x0)kf (k)(x0),

where f (k)(x0) denotes the k-th order derivative of f , and f(n)is referred to
as the Taylor series approximation to f(x) at x0, or simply the Taylor approx-
imation of order k at x0.

♦

The theorem states, that every function can locally be approximated by a
polynomial. The higher the order of the polynomial, the more precise is the
approximation. The linear approximation we had above is therefore really a
special case for a polynomial of degree 1.

Examples

1. The cubic approximation to f(x) = exat x0 = 0 is given by

g(x) = f(x0) + f ′(x0)(x− x0) + f ′′(x0)
1

2
(x− x0)2 + f ′′′(x0)

1

6
(x− x0)3

= e0 + e0x+
1

2
e0x2 +

1

6
e0x3

= 1 + x+
1

2
x2 +

1

6
x3.

We can generalize that to polynomials of any given order n: The n-th
order approximation to f(x) = ex is given by

gn(x) =

n∑
k=0

1

k!
(x− x0)k.
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2. The linear and the quadratic approximation to cos(x) for x0 = 0 are given
by

glin(x) = cos(x0)− sin(x0) · x
= 1

and

gquadr(x) = cos(x0)− sin(x0) · x− 1

2
cos(x0)x2

= 1− x2.

3. The quadratic approximation to sin(x) at x0 = 0 is given by

g(x) = sin(x0) + cos(x0) · x− 1

2
sin(x0) · x2

= x.

4. Here is a small piece of matlab code that plots the Taylor approximation
of ex at x0 = 1 up to the order of n = 10.

>> t = [-1:0.01:2]; % define the range where we want to plot exp
>> x0 = 1; % set x0 = 1; you can change that
>> plot(t,exp(t),’k-’,’LineWidth’,3), hold on % plot exp
>> fk = exp(x0); % compute constant part
>> n = 1; % set the polynomial order to 1
>> for k = 1:10 % loop over

plot(t,fk,’-r’,’LineWidth’,3); % plot the best approx. in red
pause % wait until someone presses a key
plot(t,fk,’-b’,’LineWidth’,3); % plot the same curve in blue
n = n*k; % update the factorial function
fk = fk + 1/n*(t-x0).^k.*exp(x0); % get the next polynomial

end
>> hold off

Note that this code only works for the function f(x) = exp(x) since exp
is its own derivative.

C

Exercise E
Find the quadratic approximation to f(x)=x4 + 3x3 + x2 + x at x0 = 1.

C
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Being able to approximate functions by polynomials is extremely useful,
and done very often. Because many functions are hard to analyze, people work
with their linear or quadratic approximations in many cases . By using these
approximations, one can often get away by just using polynomials. Furthermore,
finding Taylor approximations is often not hard, you just have to be able to
differentiate. You should keep in mind though that the approximation is only
local, i.e. for x near x0, and you should be careful that the approximation is
really appropriate for your particular application.

Here are two applications where the Taylor expansion is used.

Example: Estimating small angles

A calculation that has to be done for many psychophysical experiments it to
compute the degree of visual angle. A part of the problem (it is still part of the
exercises which) is to figure out the angle ϑ in the following setup:

y︷ ︸︸ ︷

x
︷

︸︸
︷

ϑ

The natural way to do so is simply by tanϑ = y
x and, therefore, ϑ = atan yx .

However, if you do not have a computer at your disposal (e.g. when reading the
methods section of a paper on much more comfortable couch) you would still
like to have an idea what ϑ is, even if you cannot invert the tan function in your
head. Since the usual setup involves large x and small y, we expect ϑ to be very
small, i.e. close to zero. Therefore, we can simply start by computing the first
order Taylor approximation of tan around 0. First, we need the derivative of
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course:

(tanϑ)′ =

(
sinϑ

cosϑ

)′
=

cos2 ϑ+ sin2 ϑ

cos2 ϑ

=
1

cos2 ϑ
.

At zero, the first derivative is simply one. Since tan 0 = 0, the first order Taylor
approximation has the simple form

tanϑ ≈ f(1)(ϑ) = ϑ.

Fortunately, this function is really easy to invert: It is simply the function itself
f−1

(1) (ϑ) = ϑ. This shows that we can use y
x for small y and large x itself as good

estimate for the angle ϑ.

C

Example: An error analysis of depth perception

Very often a physical system shows a very specific error behavior, i.e. how the
error in the inputs shows up in the outputs of a system. This error transfor-
mation is important to know, since it tells us how an error in the input will
affect the quality of the system’s output. A good example for that is depth
perception from disparity. In this case the error in the estimated depth will
grow quadratically with depth. This is what we will show in this example.

In the simplest case of two parallel pinhole cameras with a focal length f a
distance of b between them, the distance of a point x space to the view planes
of the cameras can be estimated by d(%) = fb

% where % = xl−xr the disparity of
the two images of x, i.e. the distance between the x-coordinates of the image of
x in the two view planes of the cameras. Consider we have measured a certain
disparity %̂ which is δ away from the true disparity %, i.e. our measurement
error was δ, or %̂ = % + δ. To see how this error affects the depth estimation d
we make a first order Taylor expansion around the true value %:

d(%̂) ≈ d(1)(%̂)

=
fb

%
− fb

%2
(%̂− %)

=
fb

%
− fb

%2
(%+ δ − %)

=
fb

%
− fb

%2
δ.

The true depth error is d(%̂) − d(%). Using the Taylor expansion instead of d,
we get d(%̂) − d(%) ≈ fb

%2 δ. From d(%) = fb
% we can read off that the depth d is
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inversely proportional to the true disparity, i.e. d ∼ 1
ρ . Plugging that into our

expression for the depth estimation error, we obtain d(%̂)−d(%) ∼ fbd2ρ, which
shows that the influence of an error in the inputs grows quadratically with the
depth that we want to estimate.

C
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1.3 Integrals

1.3.1 Introduction and Definition of Integral
Sometimes we face the situation that we are only given the rate of change ẋ(t)
of some quantity of interest. How can we convert this rate into an absolute
value? One simple idea would be to start with a fixed value x0 := x(t0) and
add up the changes ẋ(t)∆t for small intervals ∆t until we arrive at the point tn
where we want to know the value of x:

x(tn) =

n−1∑
i=0

ẋ(ti)∆ti

with ∆ti = ti+1 − ti.

However, in most cases we will make an error, since the rate of change within
an interval ∆ti might vary. By only looking at the rate at the interval borders
ti, we completely ignore that. We could make the intervals shorter to keep the
error small, but in general we will always get an answer x(tn) that is slightly
wrong. How can we avoid those errors?

In the previous section, we saw that taking the derivative of a function is
calculating the rate of change of this function at every point. In this situation
we were given the function and wanted to know the rate of change. Now, the
situation is reverse. Therefore, what we would really like to do is to reverse the
process of differentiation, i.e. to get from the rate of change to the actual func-
tion value. This is the subject of this chapter. It will turn out that integration is
not as easy as differentiation. However, it has a nice geometrical interpretation
that we already read of the introductory example above. Figure 1.14 shows a
picture of our approximate integration from above. When looking at the sum∑n−1
i=0 ẋ(ti)∆ti we can interpret ∆ti as the width of a rectangle with height

ẋ(ti). Summing up their products then means summing up the areas of those
rectangles. We saw in earlier sections, that taking the derivative is the same as
computing the rate of change of a function for infinitesimal small steps along the
x-axis. This infinitesimal small step was incorporated via taking the limit of the
differential quotient, when letting the step size go to zero. Integration involves a
similar operation that we just mention here. When integrating, you really apply
the approximate summation from above, but with infinitesimal small ∆ti. This
means that an integral is the limit of the sum from above when letting ∆ti go
to zero. This limit of the sum is then denoted by a new symbol ”

´
”, a stylized

”S” for ”sum”. The ∆t is replaced by the symbol dt, which indicates that ∆t is
infinitesimally small.

Now we are ready to give the geometrical interpretation of the integral´ tn
t0
ẋ(t)dt: By making the width of the rectangles infinitesimally small, the

area of all rectangles together is the area under the curve ẋ(t).

Definition:

The integral of the function f(x) from a to b is denoted by
´ b
a
f(x)dx.
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Figure 1.13: Left: Geometrical interpretation of the approximate integration:
Areas of width ∆ti and height ẋ(ti) are summed up. Right: Geometrical inter-
pretation of integration: The integral of the displayed function in the interval
[−1, 1] is the area under the curve of that function.

♦

We can read of another important property of the integral from the geometri-
cal interpretation. When computing our approximate integral, we did not make
sure that the function values of ẋ(t) where positive. Since ∆t was always neg-
ative, it could in principle happen, that the area ẋ(ti)∆ti has a negative value.
In this case the area would really be subtracted from the whole area, instead
of being added. Therefore, our approximate integral was really the signed area
under the curve. This carries over to the real integral. The integral is the signed
area under the graph of f(x). All parts of f(x) that lie under the x-axis will be
subtracted from the whole area. Therefore, if we really want to compute the area
between the graph and the x-axis, we have to find out where f(x) crosses the
x-axis and must compute the integrals between those points separately, putting
a minus in front of the integral where f(x) is under the x-axis.

Example

If a car is moving at constant speed v, the distance it travels in time t0 is given
by vt0. If we draw a plot of v against t0, we can see that the distance traveled
between times 0 and t0 is given by the following shaded region. This is also true
if the speed v is not constant, but a function of time v(t).

Therefore, the distance traveled between times 0 and t0 can be computed by
solving the integral

´ t0
0
v(t)dt. In the case of constant speed, the velocity v does

not depend on t. In this case we can already compute the integral geometrically.
As already said, it is the area under the constant curve between 0 and t0. This
is simply vt0. So far, we do not know how to compute the integral for the
case where v depends on t. We first have to introduce a few rules how to solve
integrals. This is what we are going to do in the following paragraphs.

C
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Figure 1.14: Distance traveled at time in the time interval [0, 3] with constant
speed (left) and with varying speed (right).

Most rules for solving simple integrals are actually the inverted rules for
differentiation. Before reversing this rules we must make sure that integrating
is indeed the inverse of differentiation.

Proposition (Integrating is the inverse of differentiating)

Suppose that the function F (x) is defined by F (x) =
´ x

0
f(s)ds, i.e. F (x) is the

area under the curve from 0 to x. Then, F ′(x) = f(x), provided that f(x) is
continuous at x.

Proof:

For simplicity, suppose that f(s) is increasing near x. Then

f(x)∆x ≤
´ x+∆x

x
f(s)ds ≤ f(x+ ∆x)∆x

f(x) ≤
´ x+∆x
x

f(s)ds

∆x ≤ f(x+ ∆x).

Now, we can observe that

F (x+ ∆x)− F (x) =

ˆ x+∆x

x

f(s)ds,

so
f(x) ≤ F (x+ ∆x)− F (x)

∆x
≤ f(x+ ∆x).

If we let ∆x→0, f(x+∆x)→ f(x) by continuity of f(x), and F (x+∆x)−F (x)
∆x →

F ′(x) by definition of derivative. In summary,

f(x) ≤ F ′(x) ≤ f(x),

which implies that F ′(x) = f(x).

�
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The proposition shows, that integrating is really inverse differentiation. That
is why the integral is also sometimes called anti-derivative. So far we have only
discussed so called definite integrals, i.e. integrals that are computed between
two points on the x-axis. Often, we can also inverse the process of differentiation
first and plug in the borders of the integral later. The notation for this kind of
integral is the same except that the boundary points are left out at the integral
sign. Now, we can collect all our kinds of integrals in a mathematical definition.

Definition (Anti-Derivative)

Any function F (x) with the property that F ′(x) = f(x) is called an anti-
derivative or indefinite integral of f(x). A indefinite integral is denoted by
F (x) =

´
f(s)ds. Once we have the indefinite integral, calculating any definite

integral can be computed via:
ˆ b

a

f(s)ds = F (b)− F (a).

If F (x) is an anti-derivative, so is F (x)+C for any constant C. This constant
does not matter, because if evaluate the integral, the constants cancel: F (b) +
C − (F (a) + C) = F (b)− F (a) + C − C = F (b)− F (a).

In many cases, the shorthand [F (x)]ba = F (b)− F (a) is used.

♦

The relationship between integrating and differentiating allows us to calcu-
late integrals. Furthermore, once we have calculated an indefinite integral, we
can easily check whether it is correct by just differentiating it again. If we get
the original function we started with, everything is correct, otherwise there is
a mistake somewhere. One could even just guess the integral, and then verify
whether the guess is correct. So, even if integrating can be hard sometimes,
checking whether the result is correct is almost always easy.

Example

Even without knowing any rule how to integrate so far, we know the anti-
derivative of f(x) = ex is again F (x) = ex + C, since (ex)

′
= ex. The area

under the graph of f(x) between 0 and some other point is given by the integral
ˆ T

0

f(x)dx = F (T )− F (0)

= eT − e0

= eT − 1.

For T → ∞ the integral diverges, which means that the area under f(x) = ex

is not finite.

C
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Exercise E
Calculate the derivative of F (x) = 1

n+1x
n+1 and thus verify that F (x) is the

anti-derivative of f(x) = xn. For which values of n is this not valid?

C

If you have solved the exercise, you have verified that the indefinite integral
of f(x) = xn is F (x) for all n 6= −1. This is the only rule we will introduce
here. More advanced rules will be introduced in the next section. Like for
differentiation, there are a few anti-derivatives that we will not prove here and
which you should just remember, because they occur very often when calculating
integrals.

Anti-Derivatives of important functions

• f(x) = a⇒ F (x) = ax+ C

• f(x) = xa ⇒ F (x) = 1
a+1x

a+1 + C for a 6= −1

• f(x) = sin(x)⇒ F (x) = − cos(x) + C

• f(x) = cos(x)⇒ F (x) = sin(x) + C

• f(x) = ex ⇒ F (x) = ex + C

• f(x) = 1
x ⇒ F (x) = ln(x) + C

Example (Approximating Integrals with Matlab)

Using a similar idea as for taking numerical derivatives we can also numerically
compute approximate values of integrals in matlab. This idea is to use the
definition of an integral as the sum of the areas of rectangles with height f(x) and
width ∆x in the limit of infinitesimally small ∆x. In order to give you a function,
that you can reuse, we will use a bit more advanced matlab programming.
Assume you are given a matlab function f which returns the function values at
the points that you call it on. You can realize that in matlab via a so called
function handle. A function handle is a variable, which is really a function.
That means you can simply call the variable as if it would be a function. The
important point is, that you can write code that uses a function for which you
do not know what it will be exactly. For now, we simply a assign a function to
a function handle f. This seems completely pointless now, but will be become
clear later. You can assign functions to variable by using the “@”-symbol.

>> f = @exp % assign f to be the exponential function
f =

@exp
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Now we go on with approximating our integral. First, we choose a certain
small step width ∆x, integral border between which we want to compute the
integral, and base points at which we will evaluate the function to get the height
of the rectangles.

>> dx = .01; % set stepwidth
>> a = 1; b = 2; % set integral borders
>> x = [a:dx:b]; % get base points

Next, we evaluate the function f (which is exp at the moment) at the base
points.

>> fval = f(x); % evaluate function handle at x

Now, we use the fact that

ˆ b

a

f(x)dx ≈
n∑
i=1

f(xi)∆x

= ∆x

n∑
i=1

f(xi),

where is the number of our base points xi and f(xi) are the values contained in
the array fval. Translating that formula into matlab yields:

>> I = sum(fval)*dx; % compute approximate integral

Now, we can use the fact that we did not directly specify what function f
exactly is to write a matlab function which we can reuse. For that purpose, we
create a file with the name of the function by:

>> edit integrate.m

In that file we specify the function.

function I = integrate(f,a,b,dx)
x = [a:dx:b]; % get base points
fval = f(x); % evaluate function handle at x
I = sum(fval)*dx; % compute approximate integral

The code above defines a function named integrate that takes four input
arguments: the function handle f, the integral boundaries a and b and the step
width dx. It returns the approximate value of the integral

´ b
a
f(x)dx as we

compute it above. However, we can call it on different functions and different
integral boundaries now, without having to redefine a and b all the time. Our
example from above can be reproduced via:
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>> I = integrate(@exp,1,2,.01)
I =

4.7213

Other uses of the function could look like

>> I = integrate(@cos,0,2,.01)
I =

0.9122
>> I = integrate(@log,1,3,.001)
I =

1.2964

C

1.3.2 Evaluating and Transforming Integrals
1.3.2.1 Integrals and Sums

Above, we have seen that the integral of f is the limit of a sum of infinitesimal
narrow rectangles with heights given by the function values f(x). If f is the sum
of two functions f(x) = g1(x)+g2(x), we can split this sum into two. Therefore,
the integral of a sum of two functions is the sum of their integrals:

ˆ b

a

(f(x) + g(x))dx =

ˆ b

a

f(x)dx+

ˆ b

a

g(x)dx.

This rule is of course also valid for a sum of an arbitrary number of functions.
By the same reasoning, constant factors can be pulled out of the integral,

because constant factors can be pulled out of sums:
ˆ b

a

c · f(x)dx = c ·
ˆ b

a

f(x)dx.

1.3.2.2 Integrals of Polynomials

Now we are equipped with enough rules to be able to calculate the anti-derivative
of polynomials. We show how to do this with a small example.
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Example

We calculate the anti-derivative of f(x) = 2x2 + x+ 1:

F (x) =

ˆ
f(x)dx

=

ˆ
2x2 + x+ 1dx

=

ˆ
2x2dx+

ˆ
xdx+

ˆ
1dx

=
2

3
x3 +

1

2
x2 + x.

We can use this anti-derivative to compute the integral
´ 2

1
f(x)dx:

ˆ 2

1

f(x)dx = F (2)− F (1)

=
16

3
+ 1 + 2− 2

3
− 1

2
− 1

=
37

6
.

C

Example

Before coming to more advanced rules for calculating integrals, we show a more
sophisticated example: What is the integral of f(x) = |x| from −10 to 10? At
first glance, it is not clear how we should integrate |x|. Therefore, we apply a
simple trick. Since an integral is simply an infinite sum of infinitesimal small
rectangle, it does not matter if we split an integral into two ”sums”. Therefore,
we can split the integral

´ 10

−10
|x|dx into

´ 10

−10
|x|dx =

´ 0

−10
|x|dx +

´ 10

0
|x|dx.

Between those boundaries, we can use the piecewise definition of |x|:
ˆ 10

−10

|x|dx =

ˆ 0

−10

−x dx+

ˆ 10

0

x dx

= [−1

2
x2]0−10 + [

1

2
x2]10

0

=
100

2
+

100

2
= 100.

C

1.3.2.3 Integrals and Change of Variables

Sometimes, it is easy to integrate f(s), but we actually want to integrate g(x) =
f(x+ s) . The new function g(x) can be seen as a shifted version of f(x), so we
can integrate by shifting the limits of integration as well. This leads the rule:
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ˆ b

a

f(x+ s)dx =

ˆ b+s

a+s

f(x)dx.

Example
ˆ 10

0

(x− 5)2dx =

ˆ 5

−5

x2dx =
2

3
53

C

Similarly, we might want to integrate a function g(x) = f(sx) where the
x-axis has been rescaled. In this case, we also have to adjust the limits of
integration, but also get an extra factor in front of the integral.

ˆ b

a

f(sx)dx =
1

s

ˆ bs

as

f(x)dx

Example ˆ 3

0

(2x)2dx =
1

2

ˆ 6

0

x2dx = 2 · 1

3
· 8 · 27

ˆ 1

0

e2xdx =
1

2

ˆ 2

0

exdx =
1

2

(
e2 − 1

)
ˆ 2π

0

sin
(x

2

)
= 2

ˆ π

0

sin(x)dx = 2 · 2.

C

The following box provides a summary of all transformation rules, that we
have seen so far.
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Transformations rules for integrals

• Summation Rule: The integral of a sum of is the sum of the integrals:

ˆ b

a

n∑
i=1

gi(x)dx =

n∑
i=1

ˆ b

a

gi(x)dx.

• Constant factors can be pulled out of the integral:
ˆ b

a

c · f(x)dx = c ·
ˆ b

a

f(x)dx.

• Integrating from a to c is the same as integrating from a to b, and then b
to c, and adding the two integrals (This is useful for evaluating integrals
over piecewise functions):

ˆ b

a

·f(x)dx +
´ c
b
f(x)dx =

ˆ c

a

f(x)dx.

• Shift Rule: ˆ b

a

f(x+ s)dx =

ˆ b+s

a+s

f(x)dx.

• Rescaling Rule:
ˆ b

a

f(sx)dx =
1

s

ˆ bs

as

f(x)dx

1.3.2.4 Integrals and Statistics

Integrals are extremely important in probability theory and statistics. The
expected value of a random variable X is simply the integral E(X) =

´
Ω
x ·

p(x)dx, where p(x) is the probability density function of x. The subscript Ω
indicates that we choose the boundaries of the integral such that all possible
values of the random variable are covered. The integral is often not too hard
to do. Unfortunately, for our favorite distribution, the Normal distribution or
Gaussian, calculating the expectation involves some techniques that are beyond
the scope of this course1.

Examples

1. The Expectation of a Uniform Distribution:
The pdf of a Uniform Distribution on [0, 1] is f(x) = 1. The expectation
is E[X] =

´ 1

0
xdx = 1

2

1namely either transforming to polar coordinates or using contour integration
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2. The Variance of a Uniform Distribution
The Variance is V[X] = E[X2]− [E[X]]2. So, for the Uniform distribution,
V[X] =

´ 1

o
x2dx− 1

4 = 1
3 −

1
4 = 1

12 .

3. The expectation function E is a linear function for any distribu-
tion:
Consider the random variablesX and Y and their joint distribution p(x, y).
The expectation of X is given by E[X] =

´
xp(x)dx, the expectation of

Y by E[y] =
´
yp(y)dy. By not specifying any integral boundaries we

silently assume that the integrals are taken over the whole range of possi-
ble values of each random variable. The single distributions p(x) and p(y),
called marginal distributions or simply marginals, can be computed from
the joint distribution p(x, y) by p(x) =

´
p(x, y)dy and p(y) =

´
p(x, y)dx.

This computation is usually referred to as “integrating out variables”.
What it means is, that when writing p(x) we do not care about the value
of y. For that reason we have to collect all the probability mass of the ys
that occur together with that x. This is exactly what we do by integrat-
ing.
Even though, we do not know anything about the distribution p(x, y), by
simply using properties of integrals, we can show that the expectation is
a linear function. For that purpose we have to show that (i) the expec-
tation of the sum of X and Y is the sum of the expectations and (ii) the
expectation of scaled versions of X is the scaled expectation of X. For the
sake of compactness, we merge (i) and (ii) in a single computation. We
show that E[aX + bY ] = aE[X] + bE[Y ] for a, b ∈ R.

E[aX + bY ] =

ˆ ˆ
(ax+ by)p(x, y) dxdy

=

ˆ ˆ
axp(x, y) dxdy +

ˆ ˆ
byp(x, y) dxdy

= a

ˆ ˆ
xp(x, y) dxdy + b

ˆ ˆ
yp(x, y) dxdy

= a

ˆ
x

ˆ
p(x, y) dydx+ b

ˆ
y

ˆ
p(x, y) dxdy

= a

ˆ
xp(x) dx+ b

ˆ
yp(y)dy

= aE[X] + bE[Y ]

C
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1.4 Derivatives in Rn

1.4.1 Partial Derivatives
Example (Least Squares)

Consider the following problem: We are given a number of noisy measure-
ments y1, ..., ym ∈ R that we measured at corresponding base points x1, ..., xm ∈
R. Now we want to model the yi as an affine function of xi, i.e. we want to find
a line g(x) = wx+ b such that yi ≈ g(xi). Since your measurements are noisy,
there is probably not a line that contains all points (xi, yi). From all the other
lines that match the points more or less well we have to choose one that matches
our points (xi, yi) best. The meaning of ”matching best” is usually expressed by
means of a loss function. The most common choice is the sum of the squared
deviations from that line

`(w, b) =

m∑
i=1

(yi − (wxi + b)) ². (1.3)

This squared loss is a function of the line parameters w and b. The approach
of finding a line by minimizing (1.3) is known as least squares and goes back to
Gauß, who became famous for finding a lost comet with this approach.

C

Our loss is a function of two parameters, i.e. ` : R² → R. So far, we only
looked at finding the optima of functions f : R→ R. However, there are only a
few changes in the rules for taking derivatives or finding optima when dealing
with multivariate functions f : Rn → R.

The first change is obvious. Since our function has more than one variable,
we must take the derivative with respect to more than one variable now. This
kind of derivative is know as partial derivative.

Definition (Partial Derivative):

Let f : Rn → R, (x1, ..., xn) 7→ f(x1, ..., xn) be a multivariate function. The
partial derivative with respect to a xi is taking the normal derivative of f with
respect to xi while treating all other xj , j 6= i as constants. The partial deriva-
tive with respect to xi at the point z = (z1, ..., zn) is denotes with the symbol
∂f
∂xi

(z), ∂
∂xi

f(z) or sometimes ∂
∂xi
|zf .

♦

When dealing with a function of n variables, we can compute n partial
derivatives. Computing all partial derivatives and assembling them in a vector
gives us the so called gradient.
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1.4.2 Gradient and Optima in Rn

Definition (Gradient):

The n-dimensional vector containing all partial derivatives of a function f :
Rn → R at the position z

∇f(z) =

(
∂f

∂x1
(z), ...,

∂f

∂xn
(z)

)
is called gradient of f at z. It is denoted with ∇f(z) or sometimes ∇|zf .

♦

Similarly to finding optima of univariate functions f : R→ R, where f ′(x) = 0
was a necessary condition for x being an optimum, a necessary condition for
x = (x1, ..., xn) being an optimum is that all partial derivatives vanish, i.e.
∇f(x) = (0, ..., 0).

Remark (Gradient Descent)
The gradient of a function f at a point x has a remarkable property. It

always points into the direction of steepest ascent of the function f at x. This
property is used in the so called gradient descent algorithm. Starting at a
random position x(0), gradient descent computes the gradient ∇f(x(0)) of f at
x(0) and makes a small step in its direction (or in the opposite direction, when
minimizing a function). Let us assume that we want to minimize a function (for
maximizing, the gradient is added and not subtracted). We start at a random
position x(0), compute the gradient ∇f(x(0)) and obtain a new value for x via
x(1) = x(0) − α∇f(x(0)). At x(1), we repeat this procedure. By that we obtain
the general update rule

x(t+1) = x(t) − α∇f(x(t)).

The art, somehow, is to choose the scaling constant α. This is usually done by
line search algorithms, that we do not describe here. However, choosing a small
constant value for α also works for simple examples. The procedure is repeated
until the gradient becomes zero, i.e. ∇f(x(t)) = (0, ..., 0). Gradient descent
does not yield a global minimum. It simply gives you the local minimum that
you reach when running down the surface defined by the function f starting at
x(0). Intuitively, you can imagine gradient descent as a small ball, that rolls
down a surface until it gets stuck in the next valley.

C

Example (Least Squares cont’d)
Let us look again at our least squares problem. Since we want to find the

minimum of

`(w, b) =

m∑
i=1

(yi − (wxi + b)) ²,
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we need to compute the gradient ∇`(w, b), set it to zero and solve for w and b.

∂`

∂w
=

∂

∂w

m∑
i=1

(yi − (wxi + b)) ²

Summation Rule
=

m∑
i=1

∂

∂w
(yi − (wxi + b)) ²

Chain Rule
=

m∑
i=1

2 (yi − (wxi + b)) · ∂
∂w

(yi − (wxi + b))

=

m∑
i=1

2 (yi − (wxi + b)) · −xi

= 2

m∑
i=1

wxi² + bxi − xiyi

∂`

∂b
=

∂

∂b

m∑
i=1

(yi − (wxi + b)) ²

=

m∑
i=1

2 (yi − (wxi + b)) · ∂
∂b

(yi − (wxi + b))

=

m∑
i=1

2 (yi − (wxi + b)) · −1

=

m∑
i=1

2 (wxi + b− yi) .

If we denote the mean of xi with µx = 1
m

∑m
i=1 xi, the mean over yi with

µy = 1
m

∑m
i=1 yi, and splitting the sums, we can simplify the equations to

∂`

∂w
= 2

(
w

m∑
i=1

xi² + bmµx −
m∑
i=1

xiyi

)
∂`

∂b
= 2 (wmµx +mb−mµy)

Setting ∂`
∂b = 0 and solving for b then yields

2 (wmµx +mb−mµy) = 0

⇔ b = µy − wµx.

This equation has a simple interpretation. b is the mean deviation of y from our
line g(x) = wx without offset b.



CHAPTER 1. BASICS 62

Plugging that into ∂`
∂w yields

2

(
w

m∑
i=1

xi² + bmµx −
m∑
i=1

xiyi

)
= 2

(
w

m∑
i=1

xi² +mµx(µy − wµx)−
m∑
i=1

xiyi

)

= 2

(
w

m∑
i=1

xi² +mµxµy − wmµ2
x −

m∑
i=1

xiyi

)
.

If we remember that the variance σx² of the xi can be computed via σx² =
1
m

∑m
i=1 xi²− µx² and if we denote the covariance between x and y with σxy =

1
m

∑m
i=1 xiyi − µxµy, we can simplify the equation to

2

(
w

m∑
i=1

xi² +mµxµy − wmµ2
x −

m∑
i=1

xiyi

)
= 2 (wmσ²x −mσxy) .

Setting that equation to zero and solving for w yields

2 (wmσ²x −mσxy) = 0

⇔ w =
σxy
σ²x

.

The term σxy
σ²x

has again a simple interpretation: It is the correlation coefficient
ρ =

σxy√
σx²
√
σy²

times the the standard deviation σy =
√
σy² of the yi divided by

the standard deviation of the xi, i.e. w = ρ
σy
σx

. Plugging that into the equation
for b yields

b = µy − wµx
= µy − ρ

σy
σx
µx

and we are left with the line equation

g(x) = wx+ b

= ρ
σy
σx
x+ µy − ρ

σy
σx
µx

= ρ
σy
σx

(x− µx) + µy.

If you think about it, this equation makes perfect sense. In order to obtain
a estimate for the associated y for a given x, we first subtract the mean from
x as estimated by our sample, normalize its variance to one by dividing by
the standard deviation, multiply the result with the correlation coefficient ρ,
multiply the result with the standard deviation of y to get the scale right and
finally add the mean µy of y.

C
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Unfortunately, we cannot check if the values for w and b really correspond
to a minimum, yet. In order to do so we would need the concept of matrices
and eigenvalues. Just for the sake of completeness, we quickly mention how to
generalize the sufficient conditions for a minimum and a maximum to more than
one dimension.

The second derivative of a function f : Rn → R is a Rn×n matrix. This
is not surprising, since the first derivative with respect to all variables was a
vector (the gradient), or a function from Rn into Rn. Taking the derivatives
with respect to all parameters again, yields a matrix. This matrix is called the
Hessian matrix or simply the Hessian.

Definition (Hessian):

The Rn×n matrix H containing all the second derivatives of a function f : Rn →
R at a position z

H(z) =


∂²f
∂x1² (z) ∂²f

∂x1∂x2
(z)

∂²f
∂x1∂x2

(z)

∂²f
∂xn−1∂xn

(z)
∂²f

∂xn−1∂xn
(z) ∂²f

∂xn² (z)


is called Hessian.

♦

The sufficient condition for a function f to have a minimum or maximum at
x is that H(x) is positive definite or negative definite, respectively. This means
that H(x) has only positive or negative eigenvalues, respectively. You will see
what that means in the following part about linear algebra.



Chapter 2

Linear Algebra

Linear Algebra plays an important role in many branches of mathematics and
natural sciences. Even when not visible at first glance, linear algebra can help
you to understand the biggest portion of mathematics that you will ever have
to deal with. This is basically due to the fact that most of linear algebra can
be interpreted geometrically which is a helpful source of intuition. However,
linear algebra comes with the price that it is confusing for most people at the
beginning. The reason for this is basically that linear algebra introduces a lot of
new definitions and uses a special kind of notation, the matrix notation, for its
operations. But as soon as one got used to the linear algebra way of thinking,
it is a very helpful and natural tool which one does not want to miss.

We will start this section by introducing vectors

x =

 x1

...
xn

 ,

which will allow us to efficiently represent n inputs in a single variable x. Along
with them we will introduce a number of useful operations that can be done
with vectors. In 1.1.2 we saw that a linear function is completely determined
by a single input-output pair (x, y) with y = f(x). At that point, the linear
function took only one input argument x. In this chapter we will look at linear
functions that take several inputs x1, ...,xn.

It will turn out that, similar to one-dimensional linear functions, a n-dimensional
linear function is completely determined by n input output pairs (yi,xi) with
i = 1, ..., n. This will enable us to introduce matrices, a extremely powerful tool
when dealing with linear functions of more than one dimension.

We will finish this chapter with advanced operations and properties of ma-
trices, such as eigenvectors and eigenvalues.

64



CHAPTER 2. LINEAR ALGEBRA 65

2.1 Vectors
A vector is a shorthand notation for a ordered set of numbers (x1, ..., xn). As a
convention, we denote vectors with a lower case Latin letter in bold font

x =

 x1

...
xn

 .

Examples

• The x and y coordinates of a point in 2-D x0 =
(
x
y

)
∈ R2 is a vector.

Similarly, any point in in 3-D x0 =

 x
y
z

 can be written as a vector.

So, every point in space can be written as a vector.

x0

y0
x0

x

y

Vectors are sometimes drawn as points and sometimes drawn as arrows,
depending on what one intends to indicate. When drawing it as a point
one wants to emphasize that the elements of the vector are coordinates
in space. When drawing it as an arrow, one wants to emphasize that
the vector indicates a direction, i.e. the direction from the center of the

coordinate system to the point x0 =

 x1

...
xn

.
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• The activity, i.e the firing rates, of n simultaneously recorded neurons can

be described as a n-dimensional vector r =

 r1

...
rn

 .

• The color of a pixel, e.g. in the RGB color space, can be written as a

vector c =

 r
g
b

 .

• The pixel intensities of an n×m image

I =



I11 I12 . . . I1m

I21

...
...

. . .
I(n−1)m

In1 . . . In(n−1) Inm


can be described as a vector v ∈ Rn×m by stacking the columns of I upon
each other:

v =



I11

I21

...
Iij

I(i+1)j

...
Inm


.

It might be tempting to think of an image as a matrix. In matlab, they are
usually stored as matrices, and that is certainly useful for looking at them.
However, mathematically, it is really much more natural to think of an
image as a vector. Matrices (as we will see later) are really transformations
which can be multiplied–does it really make sense to multiply to images?
When talking about operation on images in the following, unless explicitly
stated otherwise, we always implicitly assume that a image is represented
as this kind of stacked vector. Note that stacking columns on top of each
other is also the way matlab represents matrices as vectors. If A is a
m × n matrix, then A(:) is a nm × 1 dimensional column vector. If you
converted an image I into a vector v via v=I(:), you can transform it
back into matrix form via I2=reshape(v,m,n), if I was a m× n image.

• Functionsf(x) can often be viewed as vectors, provided that we only con-
sider a fixed set of inputs x1, . . . xn. Then, we the function f(x) can be
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thought of as a vector

f =

 f(x1)
...

f(xn)

 .

C

As we just saw, quite a few objects can naturally be described by vectors.
Additionally, it is possible to carry out certain operations with these objects.
E.g. we can always add two images or multiply it with a scalar to increase or
decrease its luminance. Of course, the same operations can also be carried out
with vectors. Let us just summarize vectors and their properties in a definition.

Definition (Vectors) A n-dimensional vector x =

 x1

...
xn

 is a ordered set

of n values x1, ..., xn. In order to indicate that a symbol denotes a vector, it
is usually written in bold font. The set of all n-dimensional vectors with real
entries is denoted Rn. A set like Rn is also called vector space. There are a few
basic operations that can be applied to vectors:

• Addition: Let x,y ∈ Rn be two n-dimensional vectors. The sum of two
vectors is simply the sum of the single entries

x + y =

 x1

...
xn

+

 y1

...
yn


=

 x1 + y1

...
xn + yn

 .

• Multiplication with a scalar: Let x ∈ Rn be a n-dimensional vector. The
product of x and a scalar a ∈ R is defined as

a · x = a ·

 x1

...
xn


=

 ax1

...
axn

 .

• Transposition: So far, each vector was written as a vertical stack of its

entries x =

 x1

...
xn

. However, for a reason that will become clear soon,
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vectors can also be written as an array of numbers x = (x1, ..., xn). The
operation of converting a column into a row vector and vice versa is de-
noted by the symbol ”>” in the superscript, i.e.

x =

 x1

...
xn


⇔ x> = (x1, ..., xn)

⇔ (x>)> = x.

♦

2.1.1 Length of a vector: The euclidean norm
A very basic property of a vector that we can compute is its length. In general,
the length of a vector is called the norm of a vector. Since the norm is a very
frequently occurring function of a vector x it has its own notation: It is indicated
by ||x||.

Example Assume we are given a 2D vector x =
(

3
4

)
. Since x ∈ R2 we can

use Pythagoras theorem to compute its length ||x|| =
√

32 + 42 =
√

25 = 5.

-2 3

-2

3

︸ ︷︷ ︸
=a

︸
︷︷

︸
=
b

♦

This way of computing a vector generalizes to n dimensions. In n dimensions,
the Euclidean norm of a vector is the square root of the sum of its squared
entries:

||v|| =

√√√√ n∑
i=1

v2
i .
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The Euclidean norm has a few properties, that are useful when dealing with
it.

Lemma (Properties of the Euclidean norm) The Euclidean norm

|| · || : Rn → R
x 7→ ||x|| =

√∑n
i=1 x

2
i

has the following properties:

||x|| > 0 whenever x 6= 0 (2.1)
||x|| = 0 whenever x = 0 (2.2)

||ax|| = |a| · ||x|| for all a ∈ R (2.3)
||x + y|| ≤ ||x||+ ||y|| for all x,y ∈ Rn. (2.4)

♦

Examples

• In order to scale a vector v to length one, we just need to divide all its
entries by ||v||. We can do this, since ||v|| is just a scalar. The resulting
vector will have length one, since∣∣∣∣∣∣∣∣ 1

||v||
v

∣∣∣∣∣∣∣∣ 2.1 and 2.3
=

1

||v||
||v||

= 1.

The operation of scaling a vector to length one is called normalization.

• Dividing by the norm of a vector can also be used to normalize the mean
luminance of a set of images I1, ..., Im. Assume you want to fix the lumi-
nance of I1, ..., Im to a fixed value a. All you have to do is to multiply
each image Ik by a

||Ik|| , where we think of Ik as a vector with the stacked
columns of the kth image as in the example above.

• Variance: The variance of a set of numbers x = (x1, x2, . . . , xn) is given
by V ar(x) = 1

n

∑
i(xi − E(x))2, where E(x) = 1

n

∑
i xi is the average of

x. This can be rewritten as Var(x) = 1
n‖x− E(x)‖2.

(Subtracting the number E(x) from the vector x is slightly sloppy nota-
tion, though)

♦

As you might guess, the Euclidean norm is not the only function that fulfills
the properties (2.1), (2.2), (2.3) and (2.4). In fact, those properties are usually
used to define a norm on a vector space. Since there are several possible norms
on Rn, the Euclidean norm is also sometimes written with a two in the subscript,
i.e. ||x||2. Since we will deal with the Euclidean norm for most of the time, we
will only use the subscript when it is not clear from the context which norm is
meant.
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2.1.2 Projection and Scalar Product
A very important operation between two vectors is the scalar product1 or dot
product :

Definition (Scalar Product)

The scalar or dot product between two vectors x,y ∈ Rn is defined as

〈x,y〉 = 〈y,x〉 =

n∑
i=1

xiyi.

♦

At this point we can already introduce a small bit of matrix notation: By
definition, the product of a row vector x> and a column vector y equals the
scalar product between them:

x>y = 〈x,y〉.

This will make it easies to understand the general matrix-matrix or matrix-
vector products that we introduce later. Unlike in the multiplication of scalar
values, the order of the elements does matter in matrix multiplication. There-
fore, it is important that the row vector appears first and the column vector
appears second.

Examples

• The mean of the entries x1, ..., xn can be written in terms of the scalar
product as

1

n

n∑
i=1

xi =
1

n
〈1n,x〉

=
1

n
1>nx.

• In 1.3 we saw, that an integral is the sum of the areas of infinitely narrow
rectangle with their height given by the function values at the respective
position:

ˆ b

a

f(x)dx = lim
h→0

n−1∑
k=0

f(a+ k · h) · h,

where n is the number of intervals of width h between a and b. Assume
that we need to compute the value of the integral in a program we write.
If the function f is not too nasty and we do not need the exact value

1not to be confused with a product by a scalar...
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of the integral, we can just choose a very small h, e.g. h = b−a
2−m for an

appropriate m, and just use a sum to approximate the integral, i.e.

ˆ b

a

f(x)dx ≈
2m−1∑
k=0

f(a+ k · h) · h.

But this sum is simply the scalar product between two 2m-dimensional

vectors h = h · 12m and f =

 f(a)
...

f(a+ (2m − 1)h)

, i.e.

ˆ b

a

f(x)dx ≈ 〈h, f〉.

For programs like Matlab this is an easy and elegant way to write code
for that approximate integral. E.g. the code for computing the integral´ 2π

0
sin(φ)dφ would look like this:

>> h = (2*pi)/2^10; % define increment
>> phi = [0:h:2*pi]; % get angles between 0 and 2*pi
>> f = sin(phi); % get the function values

>> h = h*ones(length(f),1); % make h into a vector
>> f*h % compute the approximate integral

ans =

-4.5996e-18

• In general, it is often useful to imagine an integral like
´
f(x)g(x)dx as a

dot product between two very long vectors, because a lot of the geometrical
intuition carries over. In fact, for a certain type of functions, a dot product
between two functions can be defined as 〈f, g〉F =

´ +∞
−∞ f(x)g(x)dx. Here

the subscript F indicates that this dot product is not the normal dot
product as we know it. Another situation where the dot product intuition
is useful is the convolution of two functions, which we will introduce later.

• Spectral sensitivity of cones: The frequency spectrum of any light source
can be characterized by a vector l = (l1, l2, · · · , ln), where, lkdenotes the
power of the light source for some wavelength which we index as k. Simi-
larly, the spectral sensitivity of any cone in the retina can be described by
a spectral sensitivity curve s = (s1,s2, . . . , sn). For example, for an L-cone,
the curve s would have its maximum at the index k which corresponds to
the wavelength 560nm. Then, the response of the receptor to any light
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source l can be computed by calculating the dot product between l and
s :

R = 〈l,s〉 =

n∑
i=1

lisi.

• More generally, the firing rate of some neurons in the visual system can
be modeled as the scalar product between the input image I and the
receptive field Ψ. In fact, neurons for which this holds are usually referred
to as simple cells, and neurons for which it does not are called complex
cells. If we imagine the receptive field as an image of the same size as
I, which is only non-zero in the area, which the neuron responds to, we
can write the answer as

∑m
i=1

∑n
j=1 Ψij · Iij , which is the scalar product

between the stacked vectors of I and Ψ, which we introduced before. The
only problem is, that this dot product can still have negative values and,
therefore, the model would allow for negative firing rates. We can fix this
by simply setting everything below zero to the value zero. This is done
via the max-function. We thereby obtain this simple response model:

r = max

0,

m∑
i=1

n∑
j=1

Ψij · Iij

 .

• Covariance: The covariance between two data vectors x and y is defined
to be Cov(x, y) = 1

n

∑
i xiyi − E(x)E(y). So, if both x and y have zero

mean, the covariance is exactly the same as the dot-product between the
vectors (divided by n).

C

So far, the scalar product may seem as no more than a useful notational
shortcut. However, it has a lot of nice properties and it is used to compute a
lot of interesting properties of vectors. Therefore, it is very important to get a
good intuition for it. In the following we develop a few.

Lemma (Angle between two vectors) The cosine of the angle between
the two vectors is given by their dot-product divided by the product of their
norms:

〈x,y〉
‖x‖‖y‖

= cos]{x,v}.

♦

We know that the cosine of any angle must be between −1,and 1. As a
consequence, we can see that the term on the left hand size, 〈x,y〉

‖x‖‖y‖ , must
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always be at least −1, and at most 1. Thus, we obtain the inequality

−1 ≤ 〈x,y〉
‖x‖‖y‖ ≤ 1

−‖x‖‖y‖ ≤ 〈x,y〉 ≤ ‖x‖‖y‖

In other words, the dot-product between any two vectors can never be bigger
than the product of their norms, and never be smaller than minus that. This
inequality is known as the Cauchy Schwarz inequality.

Example: Correlation coefficients are between -1 and 1

We can use the Cauchy Schwarz inequality to show that the correlation coeffi-
cients between any two vectors of data x and y must be between −1 and 1 :
The correlation coefficients is defined to be

Corr(x,y) =
Cov(x,y)√
VarxVary

where Cov(x,y) =
1

n

∑
i

xiyi − x̄ȳ

and Varx =

√
1

n

∑
i

x2
i − x̄

x̄ =
1

n

∑
i

xi.

Without loss of generality, we can assume that the means of x and y are both
zero. (If they are not, one can simply subtract off the mean.) Then, the formula
for the correlation coefficient becomes

Corr(x,y) =
1
n

∑
i xiyi√

1
n

∑
i x

2
i

√
1
n

∑
i y

2
i

=

∑
i xiyi√∑

i x
2
i

√∑
i y

2
i

=
〈x,y〉
‖x‖‖y‖.

Now, by the Cauchy-Schwarz inequality, we can see that correlation-coefficients
always have to be between -1 and 1.

Orthogonality

Finally, if 〈x, y〉 = 0 , we know that the cosine of the angle between them must
be 0, which implies that the angle is 90o, or π/2 in radians. In this case, x and
v are called orthogonal.
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The second important intuition about scalar products can be explained in
terms of projections. Let us start with a small example to motivate projections.

Example Assume that you have an image

I =



I11 I12 . . . I1m

I21

...
...

. . .
I(n−1)m

In1 . . . In(n−1) Inm


which you want to use to approximate another image J, i.e. you want to describe
the image J by a single value λ such that λI is closest to J or, in other words,
such that||λI− J||2 is minimal. The vector I is called projection of J onto I.

C

In a more mathematical language, the idea of a projection can be described
as follows: Assume that you have two vectors x and v, and your goal is to
express x as good as possible in terms of v. If x and v are not pointing in the
same directions, you will not be able to express x in terms of v. However, you
could search for the scalar λ such that ||λv − x||2 is minimal. If v happens to
have length one, computing the value of λ is easy: It is just λ = 〈v,x〉. If v
does not have length one, we can simply normalize it and use λ = 〈 1

||v||v,x〉 .
In that case λ

||v||v best approximates x.

Lemma (Projection) Let x,v ∈ Rn. The projection of x onto v, i.e. the
vector λ

||v||v that minimizes || λ||v||v − x||2 is given by λ
||v||v = 〈 1

||v||v,x〉 · v.

♦

Interpreting the scalar product as projection is a very important intuition
that helps to understand equations involving scalar products: If v has length
one the dot product 〈v,x〉 is the amount v has at x. If 〈v,x〉 has a large positive
or negative value compared to the length of x, then x can be well approximated
by 〈v,x〉 · v. The smaller the absolute value |〈v,x〉|, the less v has in common
with x. Therefore, we can think of 〈v,x〉 as a similarity measure between x
and v. This also fits very well to the cosine-property of the scalar product. The
smaller the angle between two vectors the larger the cosine and therefore the
larger the dot product.

C

We have seen, that the scalar product plays an important role when dealing
with vectors. Therefore it is good to know a few calculation rules that make it
easy to modify it.
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〈v,x〉 · v

︸
︷︷

︸
λ=
〈v,

x〉

x

v

x

y

Figure 2.1: Sketch of a projection: If v has length one, λv = 〈x,v〉v is the
closest v-approximation of x.

Lemma (Properties of the scalar or dot product) The scalar or dot
product of two n-dimensional vectors x and v

〈x,v〉 =

n∑
i=1

xivi

has the following properties:

1. Symmetry: The scalar product is symmetric, i.e.

〈x,v〉 = 〈v,x〉,

for all x,v ∈ Rn.

2. Bi-linearity: 〈x,v〉 is linear in both arguments, i.e.

〈ax + by, cv + dw〉 = 〈ax + by, cv〉+ 〈ax + by, dw〉
= 〈ax, cv〉+ 〈by, cv〉+ 〈ax, dw〉+ 〈by,w〉
= ac〈x,v〉+ bc〈y,v〉+ ad〈x,w〉+ bd〈y,w〉,

for all x,y,v,w ∈ Rn and a, b, c, d ∈ R. Note, however, that 〈x,x〉 is not
a linear function of x since it appears in both arguments.
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3. Cosine: If ||x|| = ||v|| = 1, the scalar product is the cosine of the angle
between the two vectors:

〈x,v〉 = cos]{x,v}.

4. Scalar product and norm: The norm of x can be written in terms of the
scalar product as follows: ||x|| =

√
〈x,x〉.

♦

Especially the second property is very important, since it basically states
that we can drag out sums from the scalar product.

2.1.3 Linear (In)Dependence
We just saw, that the best approximation of a vector x by another vector v is
given by

〈
1
||v||v,x

〉
v. If x and v point in the same direction, we can perfectly

express x in terms of v, i.e.
〈

1
||v||v,x

〉
v = λv = x. In this case, when v can

be transformed into x by a multiplication with a scalar λ, the vectors x and
v are called linearly dependent. If this is not possible, i.e.

〈
1
||v||v,x

〉
v 6= x,

the vectors x and v are called linearly independent. The extreme case of linear
independence is orthogonality, i.e. if 〈x,v〉 = 0.

In terms of projections and approximating x by v, this means that the best
approximation of x, or any of its multiples, by v is not using v at all.

2.1.4 Orthonormal Bases of a Vector Space
An important questions that arises in this context is how many vectors v1, ...,vm
suffice to express an arbitrary n-dimensional vector x and how to choose them.
An important theorem says that n linearly independent vectors are enough to
describe any vector in an n-dimensional vector space. Such a set of n linearly
independent vectors is called a basis of Rn. In general, choosing an arbitrary set
of n linearly independent vectors as basis is not the best way to choose a basis
for a vector space. We will later explain why. However, there is one particular
type of bases that are easy to handle: orthonormal bases. We will first look at
an example and then state a rigorous definition.

Example The simplest basis for R2 is the so called canonical basis e1 =
(

1
0

)
and e2 =

(
0
1

)
. Given an arbitrary vector x ∈ Rn we can express it as a sum of

the basis elements

x =

(
x1

x2

)
= x1

(
1

0

)
+ x2

(
0

1

)
.
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Defining the canonical basis e1, ..., en of Rn in exactly the same way, i.e. the
ith coordinate of ei is one and all others are zero, every vector x ∈ Rn can then
be written as

x =

n∑
i=1

xiei.

C

You might have noted that the canonical basis has two important properties.
First of all, all basis vectors have length one, i.e. ||ei|| = 1 for all i = 1, ..., n.
Secondly, the basis elements are mutually orthogonal, i.e.

〈ei, ej〉 =

{
1 if i = j
0 else .

There is a notational shortcut to for “
{

1 if i = j
0 else ”, which is called the Kro-

necker Delta. It is just defined as

δij =

{
1 if i = j
0 else .

It is used a lot, since it causes less effort to write. You can think of delta
functions as the continuous equivalent of the Kronecker Delta. Using it, we
would write orthogonality as

〈ei, ej〉 = δij .

In the following we will use the Kronecker Delta for notational convenience.
These two properties, i.e. normalized basis vectors and mutual orthogonality,

make a basis especially easy to deal with. For that reason, those basis have an
own name.

Definition (Orthonormal basis) A set of vectors v1, ...,vn ∈ Rn is called an
orthonormal basis if each of them has unit length, i.e. ||vi|| = 1 for i = 1, ..., n,
and they are all mutually orthogonal:

〈vi,vj〉 = δij .

♦

Definition (Basis Expansion and Coordinates) Writing an arbitrary vec-
tor x as a sum of basis vectors x =

∑n
i=1 λivi is called basis expansion of x

according to the basis v1, ...,vn. The coefficients λi are called coordinates of x
according to the basis v1, ...,vn.

♦
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The reason, why orthonormal bases are so useful is that the coordinates of a
vector are easy to compute: They are simply given by the projection of x onto
each single basis vector. Therefore, the basis expansion of x with respect to an
arbitrary orthonormal basis v1, ...,vn ∈ Rn is given by:

x =

n∑
i=1

λivi

=

n∑
i=1

〈x,vi〉vi.

The term
∑n
i=1〈x,vi〉vi is called orthonormal expansion of x.

Examples

• The orthonormal expansion of a vector x ∈ R3 is given by

x =

〈 1
0
0

 ,

 x1

x2

x3

〉 ·
 1

0
0

+

〈 0
1
0

 ,

 x1

x2

x3

〉 ·
 0

1
0


+

〈 0
0
1

 ,

 x1

x2

x3

〉 ·
 0

0
1


= x1 ·

 1
0
0

+ x2 ·

 0
1
0

+ x3 ·

 0
0
1


=

 x1

0
0

+

 0
x2

0

+

 0
0
x3


=

 x1

x2

x3

 .

• For any fixed φ, the basis r1 =
(

cos(φ)
sin(φ)

)
, r2 =

(
− sin(φ)
cos(φ)

)
is an orthonormal

basis, since

〈r1, r2〉 = − sin(φ) cos(φ) + sin(φ) cos(φ) = 0

and

||ri|| =
√

sin(φ)2 + cos(φ)2

= 1 for i = 1, 2.

The coordinates of a vector x are given by λ1 = 〈r1,x〉 = x1 cos(φ) +
x2 sin(φ) and λ2 = 〈r2,x〉 = −x1 sin(φ) + x2 cos(φ).
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C

From the example above, we can learn two important facts. First of all,
x1, ..., xn are the coordinates of the vector x according to the canonical basis.
That sounds pretty trivial. However, it is important when we change from the
canonical basis e1, ..., en to another orthonormal basis v1, ...,vn. This is the
second observation: If we know which basis v1, ...,vn we use, it is enough to
remember the coordinates λi for i = 1, ..., n and write them in vector notation
λ = (λ1, ..., λn)>. We can just use these new coordinates λ to do our com-
putations with x without bothering about the actual underlying basis. If we
want to get back the representation in the canonical basis we can write it in the
basis expansion x =

∑n
i=1 λivi. We will hear more about change of basis in the

section about matrices.

2.1.5 A Note on Bases which are Not Orthonormal
As mentioned above, basically every set of linearly independent vectors can serve
a basis. When working with a non-orthonormal basis w1, ...,wn, the basis can
have non-normalized elements (i.e. ||wi|| 6= 1), non-orthogonal elements (i.e.
〈wi,wj〉 6= 0 for i 6= j), or both.

Having only non-normalized basis vectors does not cause problems, since we
can always normalize them by dividing by their norm and get a new orthonormal
basis 1

||w1||w1, ...,
1

||wn||wn. Even if we do not do that, the new coordinates can
simply be computed via λi = 1

||wi||2 〈wi,x〉.
If the basis is non-orthogonal, the situation get more tricky. The problem is,

that we cannot simply project our vector x onto the basis components to build
the basis expansion. The reason is, that we also gets a bit of “vi-part” of x when
computing the coordinate via λj = 〈vj ,x〉, if vi and vj are not orthogonal, i.e.
not independent. We will not go into detail here, but show an example of what
can happen, instead.

Example Consider the basis w1 =
(

1
0

)
, w2 = 1√

2

(
1
1

)
. The basis has normal

elements, since ||w1|| = 1 and w2 =

√
2 ·
(

1√
2

)2

= 1, but not orthogonal,

since 〈w1,w2〉 = 1√
2
6= 0. Assume we want to write the vector

(
0
1

)
in as a

orthonormal expansion in the basis w1,w2 we get〈
w1,

(
0

1

)〉
w1 +

〈
w2,

(
0

1

)〉
w2 = 0 ·w1 +

1√
2
w2

=
1√
2

(
1√
2

1√
2

)

=
1

2

(
1

1

)
6=

(
0

1

)
.
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This show that we cannot use the scalar product trick to compute the coordi-
nates of a vector according to a non-orthogonal basis.

C
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2.2 Matrices
Matrices are really nothing but a very convenient notation for (linear) transfor-
mations on vectors. For example, the transformations of stretching a vector, or
rotating it, or reflecting it can all be written as matrix products.

Example 1 In the photoreceptors of the retina, color is represented by the
activation of L, M and S cones (which are selective to ’red’, ’green’ and ’blue’
light, respectively.) In a crude approximation, the classical view of color vision
is that, at later processing stages, the color of a stimulus is rather represented
by two ’color-opponent’ channels, and a ’luminance’ channel. Luminance could
be computed by simply adding the activities of all cones: Lum = L + M + S.
the ’red-green’ channel could be computed by subtracting the M cone activity
from the S cones, RG = L−M, and the ’blue yellow’ channel by subtracting a
combination of M and L from S: BY = S − (M + L). To sum up:

RG = L−M + 0 · S
BY = −L−M + S

Lum = L+M + S.

This can be written in matrix notation as RG
BY
Lum

 =

 1 −1 0
−1 −1 1
1 1 1

 L
M
S

 .

So, multiplying the vector of cone-activities by this matrix returns the vector
of channel-activities. This mapping from one 3 dimensional vector to another 3
dimensional vector can be summarized succinctly by a matrix product.

Now, we will formally define what we mean by a matrix, and by a matrix-
vector product:

Definition (Matrix and matrix-vector product)

A matrix A of size m by n is a collection of numbers of the form

A =


A11 A12 · · · A1n

A21 A22 A2n

...
... . . .

...
Am1 Am2 . . . Amn

 .

The matrix product y = Ax between an m×n matrix and an n dimensional
vector x is defined to be
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y = Ax =


∑n
i=1A1ixi∑n
i=1A2ixi

...∑n
i=1Amixi

 .

We often say that x is ’pre-multiplied’ by A.

Note

• We can see that multiplying a vector by a matrix is really nothing but a
couple of dot products: To compute the first element of y, we simply com-
pute the dot product between x and the first row of A : y1 =

∑n
i=1A1ixi =

〈A(1), x〉, where we define A(1) = (A11, A12, . . . , A1n).

• For matrix-vector multiplication to make sense, the sizes have to match:
If x has n elements, we can only compute Ax if A is of size m× n! Thus,
if m 6= n, Ax is defined, but xA would not be defined!

• The result of multiplying an m×n matrix to a vector of size n×1 is always
a vector of size m× 1.

2.2.1 Reading a matrix
The ’canonical basis vectors’ are defined to be those vectors that have exactly
one entry equal to 1, and 0 everywhere else. For example, in 2D, the canonical
basis vectors are e1 =

(
1
0

)
and e2 =

(
0
1

)
, i.e the vectors that define the x and

y−axis, respectively. If we multiply a matrix M by e1, we get back the first
column of M : For example,

(
2 3
1 1

)(
1

0

)
=

(
2

1

)
(

2 3
1 1

)(
0

1

)
=

(
3

1

)
.

Therefore, the columns of a matrix are exactly the ’images’ of the canonical
basis vectors under matrix multiplication. From these images, we can calculate
the image of any arbitrary vector x, as

x =

(
x1

x2

)
= x1

(
1

0

)
+ x2

(
0

1

)
.

Therefore,

Mx = M

(
x1

(
1

0

)
+ x2

(
0

1

))
= x1

(
2

1

)
+ x2

(
3

1

)
.
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Hence, the image of any vector x under multiplication by the matrix M can
always be written as a linear combination of the columns of M.

Examples of matrices
• The identify matrix is a boring matrix which does not do anything. Mul-
tiplying any vector by it leaves it unchanged:

I = (e1, e2, ..., en)

=


1 0 . . . 0
... 1

. . . 0

0
... . . .

...
0 0 . . . 1

 .

Despite its boringness, this matrix occurs so frequently that we give it
its own symbol, namely uppercase I. This should not be confused with
images, that we also denote by I. However, it should be clear from the
context what we mean by I.
The result of multiplying a vector x with the identity matrix is just the
vector itself:

Ix =


1 0 . . . 0
... 1

. . . 0

0
... . . .

...
0 0 . . . 1


 x1

...
xn



=

 e>1 x
...

e>nx


=

 x1

...
xn

 = x.

• Matrices that look very similar to the identity matrix, are permutation
matrices. A permutation simply changes the order of coordinates of a
vector x. Let us look at a 3D example. Let x = (x1, x2, x3)> and let f
be the permutation that swaps x1 and x2, i.e. f(x) = (x2, x1, x3). The
corresponding permutation matrix is given by

P =

 0 1 0
1 0 0
0 0 1

 .
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Multiplying a three dimensional vector x = (x1, x2, x3)> with our example
of a permutation matrix yields

Px =

 0 1 0
1 0 0
0 0 1

 x1

x2

x3


=

 e>2 x
e>1 x
e>3 x


=

 x2

x1

x3

 .

• In geometry, rotation matrices play an important role: For a fixed a rota-
tion angle ϕ, rotating vectors is linear mapping, since it does not matter if
we add two vectors, rotate the result by ϕ, or do it the other way around.
In 2D there is only one rotation matrix for a given angle ϕ:

R =

(
cosϕ − sinϕ
sinϕ cosϕ

)
.

In 3D we have three coordinate planes where we can rotate a vector in,
i.e. the x1x2-, the x1x3- and the x2x3-plane. In ND we have even more.
However, the corresponding rotation matrices are easy to remember. You
can build them by taking the identity matrix and replacing the entries
corresponding to the coordinate plane you want to rotate in by the entries
that you would use for the 2D rotation matrix. For example, the rotation
matrix for the x1x2-plane in 3D is given by

R =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 ,

the matrix for a rotation in the x1x3-plane is given by

R =

 cosϕ 0 − sinϕ
0 1 0

sinϕ 0 cosϕ

 .

Multiplying a vector with a rotation matrix, means rotating this vector.
Let us look at one simple example in detail: Rotating the vector

(
1
0

)
∈ R2

about 90◦. From their definition, we can get the appropriate rotation
matrix:

R =

(
cos 90◦ − sin 90◦

sin 90◦ cos 90◦

)
=

(
0 −1
1 0

)
.
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Now we can apply it to our vector (1, 0)>:

R

(
1

0

)
=

(
0

1

)
.

We see that the resulting vector has been rotated by 90◦. Multiplying it
again with R, yields

RR

(
1

0

)
= R

(
0

1

)
=

(
0

−1

)
,

which is indeed a rotation about 2 · 90◦ = 180◦. In general this choice of
R will rotate any vector in R2 about 90◦ around the origin. If we choose
ϕ differently, the resulting matrix will rotate any vector in R2 about ϕ.
In 3D the example works just the same. You might want to try it with a
few examples in order to get used to multiplying vectors with matrices.

• The matrix that corresponds to the projection of a vector x ∈ R3 onto the
x1x2-plane, is given by

P12 =

(
1 0 0
0 1 0

)
.

Note, that the third column is zero since projecting the vector (0, 0, 1)>

onto the x1x2-plane yields the vector (0, 0)>.
Applying the matrix, that projects every vector x ∈ R3 onto the x1x2-
plane, to an arbitrary vector x ∈ R3 yields

P12x =

(
1 0 0
0 1 0

) x1

x2

x3


=

(
x1

x2

)
,

which is indeed the projection of x = (x1, x2, x3)> onto the x1x2-plane.

• Any scalar product can be thought of as a matrix product: The scalar
product between two vectors v and w is defined to be

〈v, w〉 =
∑
i

viwi.

We can see that this is equivalent to v>w =
∑
i viwi, i.e. of pre-multiplying

w be the transpose of v,v>.
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2.2.2 Every linear function can be written as a matrix
product:

Example Remember our very simple linear response model for a V1 simple
cell. Since the number of pixels of the presented image does not really matter,
let us only consider 2 × 2 input images. As shown in one of the examples
above, we can represent any of those input images by a four-dimensional vector
v = (I11, I21, I12, I22)>. In contrast to the previous example, we now consider
the spiking rate of three instead of only one neuron. By assuming that the
relation between input image and spiking rate of our neurons is linear, our
model for the spiking rates given an image is a linear function f : R4 → R3.

Assume now that we measured the response of our three neurons for the four
images

I1 =

(
1 0
0 0

)
I2 =

(
0 0
1 0

)
I3 =

(
0 1
0 0

)
I4 =

(
0 0
0 1

)
,

which yielded us four spike rate measurements r1 =

 r11

...
r31

, r2 =

 r12

...
r32

,

r3 =

 r13

...
r33

 and r4 =

 r14

...
r34

.

Note that the vectors v1, ...,v4, which correspond to the four input images
I1, ..., In, are really just the canonical basis of R4. Assume now that we get
another image Ĩ and we are asked to predict the responses of our three neurons.
In the linear model, we can use the already measured responses r1, ..., r4 to
predict the response r̃. The strategy for that is as follows: First we express
the vector notation ṽ of the new image as a linear combination of the vector
notations v1, ...,v4 of the images I1, ..., I4:

ṽ =

4∑
i=1

ṽivi

= Ĩ11


1
0
0
0

+ Ĩ21


0
1
0
0

+ Ĩ12


0
0
1
0

+ Ĩ22


0
0
0
1

 .
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Then we compute the response of our three neurons via:

f

(
4∑
i=1

ṽivi

)
f linear

=

4∑
i=1

ṽif (vi)

=

4∑
i=1

ṽiri

=

 ∑4
i=1 ṽir1i∑4
i=1 ṽir2i∑4
i=1 ṽir3i

 .

As we can see, using the linearity of f , four measurements of linear independent
inputs are enough to determine the output of an arbitrary four dimensional
image. Therefore, our linear function is completely determined by our four
measurements.

C

This example shows a very important aspect of n-dimensional linear func-
tions. Now, we state this observation in a more general way.

We can always define the matrix of a mapping with respect to any basis: Let
f : Rn → Rm be a linear function which takes in an n dimensional vector and
returns an m dimensional one. We know that each n-dimensional vector x ∈ Rn
can be described in terms of a linear combination x =

∑n
i=1 λibi of n basis

vectors b1, ...,bn. Since we can exchange the summation and function symbol
for linear functions we can do the same operation as for the one-dimensional
case:

fk(x) = fk

(
n∑
i=1

λibi

)

=

n∑
i=1

λifk(bi), for k = 1, ..., n.

Here, fk(x) denotes the kth coordinate of the output vector f(x). Therefore,
we can determine the function value of an arbitrary vector x by first expressing
x in terms of the b1, ...,bn, therefore getting the coordinates λ1, ..., λn, and
then building a linear combination

∑n
i=1 λifk(bi) of the known function values

fk(bi). This is the basic mathematical mechanic behind matrices.

Definition (Matrix of a linear mapping) Given an n-dimensional linear
function f : Rn → Rm and a basis for b1, ...,bn ∈ Rn, the matrix of the function
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f according to the basis b1, ...,bn

A =


f1(b1) f1(b2) f1(bn−1) f1(bn)

... f2(b2) f2(bn)

fm−1(b1)
... . . .

...
fm(b1) fm(b2) . . . fm(bn)


stores the function values fk(bi) for i = 1, ..., n and k = 1, ...,m, i.e. the jth
column is the output of f on the jth basis vector. These function values are
everything that is needed to compute the outcome of the linear function for an
arbitrary input.

♦

This means that each n-dimensional linear function f : Rn → Rm can be
expressed in terms of am×n matrix if we choose a basis b1, ...,bn. On the other
hand, each m× n matrix, i.e. an arbitrary m× n grid of numbers, determines
a linear function for a given basis b1, ...,bn.

It is important to understand that a matrix is always with respect to a
certain basis. If the basis changes, the matrix changes. The linear function,
however, does not.

From now on, unless explicitly noted, we use the canonical basis of e1, ..., en ∈
Rn when dealing with matrices, i.e.

A =


f1(e1) f1(e2) f1(en−1) f1(en)

... f2(e2)
. . . f2(en)

fm−1(e1)
... . . .

...
fm(e1) fm(e2) . . . fm(en)

 .

2.2.3 Multiplying two matrices
C

2.2.3.1 Matrix-Matrix Product

In the above example about the rotation matrices, we rotated a vector by 180◦

degrees by rotating it twice by 90◦ degrees with our rotation matrix

R =

(
cos 90◦ − sin 90◦

sin 90◦ cos 90◦

)
=

(
0 −1
1 0

)
.

The way we did this was multiplying a vector with R and doing the same
operation with the outcome again. However, there is also another way for
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computing this outcome: By multiplying the matrix R with itself and obtain
a new matrix R′ that corresponds to a rotation about 180◦ degrees. Speaking
in terms of functions, the matrix R′ = R ·R corresponds to the linear function
rot180(x) = rot90(rot90(x)) if rotϕ denotes the function that rotates a vector
by ϕ. This means that we obtain the matrix of a composition of two functions
by multiplying their matrices. Multiplying two matrices is fairly easy: We just
treat each of its columns as a vector on its own and multiply it with the matrix.
The result of this multiplication determines one column of the matrix-matrix
product.

Definition (Matrix-Matrix Product) The product of a matrix A ∈ Rm×n
with another matrix Bn×k is given by

A ·B =


∑n
i=1 A1iBi1

∑n
i=1 A1iBi2 . . .

∑n
i=1 A1iBin∑n

i=1 A2iBi1
. . .

...
...

. . .
∑n
i=1 A(m−1)iBin∑n

i=1 AmiBi1 . . .
∑n
i=1 AmiBi(n−1)

∑n
i=1 AmiBin



=


〈a1,b1〉 〈a1,b2〉 . . . 〈a1,bn〉

〈a2,b1〉
. . .

...
...

. . . 〈am−1,bn〉
〈am,b1〉 . . . 〈am,bn−1〉 〈am,bn〉

 ,

where ai denotes the ith row and bj the jth column of A and B, respectively.
We can see from the definition of the matrix-matrix product that the number
of columns of A and the number of rows of B must match.

♦

Notes

• We can multiply two matrices if the ’length’ of the first matches the
’height’ of the second: C = AB is only defined if A is of size m × n
and B is of size n× k. Then, the outcome C will be of size m× k. (’Inner
dimensions must match and drop out’).

• Matrix multiplication is not commutative, in general, AB 6= BA! Thinking
of matrix multiplication as applying a linear functions, this makes a lot
of sense: For example, suppose that our matrix A swaps the first and
second dimension of a two-dimensional vector, and that B doubles its first
dimension. Clearly, it does matter whether we switch dimensions before
or after doubling the first dimension.
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Examples

• Let

R =

(
0 −1
1 0

)
as above. The product of R with itself is given by

R ·R =

(
0 −1
1 0

)(
0 −1
1 0

)
=

( 〈(
0
−1

)
,
(

0
1

)〉 〈(
0
−1

)
,
(−1

0

)〉〈(
1
0

)
,
(

0
1

)〉 〈(
1
0

)
,
(−1

0

)〉 )

=

(
1 0
0 −1

)
.

• Let A =

(
2 0
0 1

)
, B =

(
0 1
1 0

)
, then

AB =

(
0 2
1 0

)
,

BA =

(
0 1
2 0

)
.

• Matrices do not have to be ’square’ to be multiplied:(
1 0 1
3 2 1

) 1 0
1 1
1 2

 =

(
2 2
6 4

)
.

• Again, the identity matrix likes to be boring: Multiplying a m × n ma-
trix A with the identity matrix Im from the left or In from the right (n
and m denote the dimension of the identity matrix) leaves the matrix A
unchanged, i.e. AIn = ImA = A.

• We can derived the addition theorems for sine and cosine from the rule
of matrix multiplication: Clearly, rotating a vector first by an angle of α,
and then by β, should yield exactly the same result as rotating it by α+β
in one go. If we denote the matrix which rotates by α by R(α), we get

R(α+ β) = R(α)R(β)(
cos(α+ β) − sin(α+ β)
sin(α+ β) cos(α+ β)

)
=

(
cos(α) − sin(α)
sin(α) cos(α)

)(
cos(β) − sin(β)
sin(β) cos(β)

)
=

(
cos(α) cos(β)− sin(α) sin(β) − cos(α) sin(β)− cos(β) sin(α)
cos(α) sin(β) + cos(β) sin(α) cos(α) cos(β)− sin(α) sin(β)

)
.
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Equation coefficients, we recover the addition theorems

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β).

• Assume that we are searching for a matrix that projects a vector x ∈ R3

onto the x1x2-plane and rotates the result by 30◦around the origin. We
can get this matrix C by multiplying the rotation matrix

R =

(
cos(30◦) − sin(30◦)
sin(30◦) cos(30◦)

)
with the projection matrix

P =

(
1 0 0
0 1 0

)
.

The result is given by

R ·P =

(
cos(30◦) − sin(30◦) 0
sin(30◦) cos(30◦) 0

)
.

Note that the order in which we multiply the matrices is the reverse order
in which we apply the transformations, i.e. projection and rotation. The
reason is simply that a vector x is multiplied with R · P from the right,
which means that it is multiplied with P first and with R afterwards. This
is exactly the order in which we wanted to apply the transformations.

C

With the rule for matrix-matrix multiplication we can also multiply a vector
from the left to a matrix. However, since the number of columns of the first
matrix must match the number of row of the second matrix in a product, we
cannot use column vectors, but only row vectors. This is one example, where
it makes a difference if we have a row or a column vector. Since a row vector
x = (x1, ..., xm) can be treated as a 1 × m-matrix, we can apply the rule for
matrix-matrix multiplication and obtain

xA = (x1, ..., xn) ·A
= (〈x,a1〉, ..., 〈x,ak〉),

if ai denotes the ith column of A as before.

2.2.3.2 Matrix Transposition

It is often convenient (or necessary) to ’flip’ a matrix or a vector by exchanging
its rows and columns. For example, we might want to write a column vector
n× 1 as a row vector of size 1×n. Formally, this operation is called ’taking the
transpose’:
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Definition (Matrix Transpose) The transpose of a matrix

A =


A11 A12 A1n

A21

... A(m−1)n

Am1 Am(n−1) Amn


is given by

A> =


A11 A21 Am1

A12

... Am(n−1)

A1n A(m−1)n Amn

 .

If A is of size m× n, A>is of size n×m.

Note

• The usual dot-product between two vectors can be written as 〈v, w〉 =
v>w.

• If we take the transpose of a product, we have to reverse the order:
(ABC)> = C>B>A>.

♦

2.2.3.3 Symmetric Matrices, Covariance Matrix and Outer Product
of Vectors and Matrices

In this section we look at a special way of using the matrix notation that might
not be immediately obvious when looking at the calculation rules for the first
time. This way of using the matrix notation is especially useful for computing
covariance matrices. Therefore, will develop the idea of the outer product with
the example of computing a covariance matrix in matrix notation. Let us start
with the definition of a covariance matrix.

Definition (Covariance Matrix) Let X = (X1, ...,Xn)> be an n-dimensional
random variable. The covariance of dimension i with dimension j is given by

Cov(Xi,Xj) = E ((Xi − E(Xi)) · (Xj − E(Xj)))

= E(Xi · Xj)− E(Xi) · E(Xj).
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The covariance tells us how Xi behaves if we change Xj and vice versa. The
single covariances can be put together in the n× n covariance matrix

C =

 Cov(X1,X1) . . . Cov(X1,Xn)
...

. . .
...

Cov(Xn,X1) . . . Cov(Xn,Xn)


=

 V ar(X1) . . . Cov(X1,Xn)
...

. . .
...

Cov(Xn,X1) . . . V ar(Xn)

 .

Empirically, i.e. given N sample vectors x1, ...,xn, the single covariances can
be computed via

ˆCov(Xi,Xj) =
1

N

N∑
`=1

(x`i − µi)(x`j − µj)

= Ĉij .

♦

For simplicity, let us assume that our sample has mean zero, i.e. µ = 0.
This is no restriction since we can always subtract µ from each xi in order to
center them around zero. For µ = 0, the above equation for the empirical mean
becomes

ˆCov(Xi,Xj) =
1

N

N∑
`=1

x`ix`j

= Ĉij .

Here, we use the hat on a variable to indicate that it has been estimated
from empirical data. Covariance matrices have a certain property: They are
symmetric, i.e. the original matrix equals its transpose C = C>. Symmetric
matrices have certain nice properties that we will encounter later in the section
about eigenvalues and eigenvectors.

Now let us return to the question of how to express the computation of
the empirical covariance matrix with a single matrix multiplication. We do
that in two steps: first we see how to generate the inner term x`ix`j of the
sum 1

N

∑N
`=1 x`ix`j and then expand this idea in order to get the full empirical

covariance matrix. To answer the first question, we must find an operation of
a vector x` with itself such that the result is a matrix C̃(`) with the entries
C̃

(`)
ij = x`ix`j . The crucial observation for that is that we can interpret a single

entry x`i as a 1×1 vector. With this in mind, we can apply the matrix product
rule to the term x`x

>
` . The dot product between the row and the column vector

simply becomes a multiplication of two scalars x`ix`j . Note, that the vectors
have the reverse order than in the dot product, i.e. the column vector is the first
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factor and the row vector is the second factor. The result of this outer product
is the desired matrix:

C̃(`) = x`x
>
`

=

 x`1x`1 . . . x`1x`n
...

. . .
...

x`nx`1 . . . x`nx`n

 .

Looking at the term for the empirical covariance matrix, we see that it can now
be computed via

Ĉ = 1
N

N∑
`=1

C̃(`).

In order to be able to express this sum as multiplication of two matrices, we must
arrange our data in an matrix such that the sum of the matrix multiplication
equals the above sum. Placing all our measurements x1, ...,xN as rows in a
N × n matrix X = (x1, ...,xN )>, we can see that

X>X =

N∑
`=1

C̃(`).

In order to see this, we must realize that an entry (X>X)ij is given by the dot
product between an N -dimensional vector that contains the ith entry of all our
measurements and a vector of the same size that contains the jth entry of all
our measurements, i.e.

(X>X)ij = (x1i, x2i, ..., xNi) · (x1j , x2j , ..., xNj) =

N∑
`=1

x`ix`j .

This is exactly what we intended. Therefore, computing the covariance matrix
fromN measurements from an n-dimensional random variable by a single matrix
multiplication can be done via

Ĉ =
1

N
X>X.
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2.3 Invertibility, Inverses and Rank

2.3.1 The Inverse of a matrix
Suppose we have given a linear system of equations, y = Mx, where M is a
given n× n matrix, and y is some knows vector. For example, lets say we want
to find a vector x such that(

1

0

)
=

(
2 3
−1 4

)(
x1

x2

)
.

How can we find x? We know that the outcome of multiplying x with the matrix
M gives us the vector y =

(
1
0

)
, but is that enough for determining x? Matrices for

which we can ’recover’ x from knowing the outcome of the matrix multiplication
Mx are said to be invertible. Formally:

Definition:

A square matrix M is said to be invertible if there exists a second matrix, called
M−1, which is such that

MM−1 = M−1M = In.

Notes:

• If M is invertible, the linear system of equations y = Mx has the unique
solution x = M−1y.

• In the example above,M−1 = 1
11

(
4 −3
1 2

)
, so x = M−1y = 1

11

(
4 −3
1 2

)(
1
0

)
=

1
11

(
4
1

)
.

2.3.2 Inverses and Determinants
For matrices of size 2× 2, we can directly derive the inverse by hand: Given a

matrix M =

(
m11 m12

m21 m22

)
, we want to find M−1 =

(
k11 k12

k21 k22

)
such that

MM−1 = I, i.e. (
m11 m12

m21 m22

)(
k11 k12

k21 k22

)
=

(
1 0
0 1

)
.

Writing this matrix product out line by line yields for equations in four
unknowns, which can be solved yielding

M−1 =
1

m11m22 −m12m21

(
m22 −m12

−m21 m11

)
.

Clearly, this formula only makes sense if m11m22 −m12m21 does not equal
zero. So, by computing this term, we can immediately see whether a 2×2 matrix
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is invertible, or not. It is therefore given a special name, it is the determinant
of M.

Definition: Determinant

The determinant of a 2×2 matrixM is defined as det(M) = m11m22−m12m21.
In general, a matrix is invertible if and only if its determinant is non-zero.

Notes:

• For a 3× 3 matrix A, we have that

detA = A11A22A33 +A12A23A31 +A13A21A32 −A31A22A13 −A32A23A11 −A33A21A12.

• If D is an n × n diagonal matrix, i.e. a matrix that is only non-zero on
the diagonal, then the determinant is given by the product of the diagonal
entries:

detD =

n∏
i=1

Dii.

This statements makes sense: The inverse of a diagonal matrix D = d11 0 0
0 d22 0
0 0 d33

 can be written directly asD−1 =

 1/d11 0 0
0 1/d22 0
0 0 1/d33

,

but this construction only works if all diagonal entries are different from
zero. On the other hand, as the determinant is the product of all diagonal
entries, it will only be non-zero if all of the diagonal entries are non-zero.

• If A is an n× n matrix, for which all entries below or above the diagonal
are zero, then the determinant is also given by the product of the diagonal
entries:

detA =

n∏
i=1

Aii.

Examples

1. The determinant of the matrices

A1 =

(
2 3
4 2

)
and

A2 =

(
2 4
1 2

)
,

are detA1 = 2 · 2− 4 · 3 = −8 and detA2 = 2 · 2− 1 · 4 = 0.
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2. The determinant of the identity matrix I is det I = 1, since the product
over the diagonal elements is one.

3. This last example shows a case where determinants are used in statistics:
The density function of a multivariate n-dimensional Gaussian with mean
µ and covariance C is given by

p(X|µ,C) =
1

(2π)
n
2

√
detC

exp

(
1

2
(x− µ)>C−1(x− µ)

)
.

Here, the square root of the determinant, i.e. the volume spanned by the
column vectors of C is used to normalize the probability density. This
is very similar to the one-dimensional case, where the square root of the
variance, i.e. σ =

√
σ2, takes over this role.

Properties of determinants: Let C = A ·B, then

1. detC = det(AB) = detA · detB

2. det(A−1) = det(A)−1

3. detA = detA>.

2.3.3 When is a matrix invertible?
In the above, we stated a general rule for determining whether a matrix is in-
vertible, namely computing its determinant. Now, we want to get more intuition
into what ’makes’ a matrix invertible. If a matrix is invertible, then given any
vector y, we can always find a unique x such that y = Mx. When could this
fail?

Suppose that we have any vector x that is such that Mx = 0. (With 0, we
here mean a vector that has all entries equal to 0). Then clearly,M(2x) = 0 also,
or M(αx) = 0 for any number α. In this case, we would have non-uniqueness,
as Mx = M(2x) but clearly x 6= 2x, for x 6= 0.

Alternatively, one possible scenario is that we have two vectors x and z
which are such that y = Mx = Mz. If that is the case, if we are only given
the outcome y, there is know way of determining whether x or z went into the
matrix-multiplication. Actually, this scenario is the same as the previous one:
If Mx = My, then M(x− y) = 0, so we have found a vector x− y which is not
equal to 0, but M(x− y) is 0.

In general, we have the statement that

Invertibility and the null-space:

A square matrixM is not invertible exactly we can find a vector x 6= 0 for which
Mx = 0. A vector is said to belong to the null-space of M is Mx = 0.
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An example

Lets consider the matrix A =

(
1 2
2 4

)
. A maps the first canonical basis vector(

1
0

)
to
(

1
2

)
, and the second basis vector

(
0
1

)
is mapped to

(
2
4

)
= 2
(

1
2

)
. As Ax can

always be written as Ax = x1

(
1
2

)
+ x2

(
2
4

)
= (x1 + 2x2)

(
1
2

)
, we can see that

the image of any vector will be proportional to
(

1
2

)
. This implies, e.g. that

A
(−2

1

)
= (−2 + 2)

(
1
2

)
= 0. So, we can see that a matrix if not invertible if

its columns do not ’fill the space’. In two dimensions, this is the case if one
column is a multiple of the other column. In general, this will be the case if(
A11

A21

)
= α

(
A12

A22

)
, for some number α, i.e. if A11 = αA12 and A21 = αA22. Getting

rid of α, we get the condition that A11 = A21

A22
A12,or A11A22 = A21A22. If this

condition is satisfied, A11A22 −A21A22 = det(A) = 0.
In three dimensions, a matrix is not invertible if its columns do not ’fill

the space’, in the sense that either all three columns lie on a line, or in a 2-
dimensional plane. We can formalize this concept using the notion of linear
independence:

2.3.4 Linear independence
Definition:

A set of vectors v1 . . . vm is said to be linearly independent if we can not find
number α1, α2, . . . , αm, where at least one of the α’s is not equal to 0, such that

α1v1 + α2v2 + . . . αmvm = 0.

If we can find such numbers, then the set of vector is said to be linearly depen-
dent.

In other words, a set of vectors is linearly independent if we can not find a
(non-trivial) linear combination of them that is 0. If vectors v1 . . . vm are linearly
dependent, then we can find some number such that α1v1+α2v2+. . . αmvm = 0,
where, lets say, α1 6= 0. So, in this case, we can write

v1 =
−1

α1
(α2v2 + . . .+ αmvm),

i.e. we can express (at least) one of the vectors as a linear combination of the
others.

Examples

• Any single, non-zero vector v is linearly independent: Clearly, αv = 0 is
only 0 if α = 0.

• The canonical basis vectors are independent: If we write, e.g.

α1

 0
0
1

+ α2

 0
0
1

+ α3

 0
0
1

 =

 α1

α2

α3

 ,
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then the only way this could be equal to

 0
0
0

 if α1 = α2 = α3 = 0.

• The two vectors
(

2
4

)
and

(
1
2

)
are linearly dependent, as

(
2
4

)
= 2
(

1
2

)
.

• The vectors

 −1
1
0

 ,

 2
0
3

 ,

 0
−2
3

 are linearly dependent, as

2

 −1
1
0

+

 2
0
3

+

 0
−2
3

 = 0

• Any set of vectors which includes a zero vector is linearly dependent, e.g.

1 ·

 0
0
0

+ 0v2 + 0v,m = 0.

2.3.5 Rank of a matrix
Consider an n× n matrix A with columns A1 . . . An. We showed early that the
image of any vector x can be written as

Ax = x1A1 + . . . xnAn.

A matrix is not invertible if and only if there exists a vector x which is
non-zero, but which maps to 0,i.e. for which

0 = x1A1 + . . . xnAn.

In other words, a matrix is invertible if and only if its columns are linearly
independent. The maximal number of linearly independent columns of a matrix
is called the rank. A matrix is said to have full rank if its rank is n, i.e. if all of
its columns are linearly independent, otherwise it is said to be rank-deficient.

Examples

• Any non-zero vector v can be considered as a rank 1 matrix.

• The matrix
(

1 2
2 4

)
has rank 1, as its columns are not independent (so

rank<2), but the vector
(

1
2

)
is non-zero, so rank≥ 1.

• The matrix

 −1 2 0
1 0 −2
0 3 3

 has rank 2, as its columns are not indepen-

dent (as shown above), so rank<3, but e.g. the two vectors

 −1
1
0

 and

 2
0
3


are linearly independent, so rank≥ 2.
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• For any diagonal matrix, the rank is equal to the number of non-zero
diagonal entries.

• The matrix (
1 3 5 7 10
2 4 6 8 9

)
has rank 2, as both rows are linearly independent (so rank ≥ 2), but there
are only two rows (so rank ≤ 2).

• The outer product of two (non zero) vectors, xx>, has rank 1: For example, 1
2
3

 (1, 2, 3) =

 1 2 3
2 4 6
3 6 9


has rank one, as (by construction), each row is a multiple of the others.

• Similarly, a sum of outer products of m n-dimensional, linearly inde-
pendent vectors x1 . . . xmhas rank m if m ≤ n,and rank n otherwise:
C =

∑
i xix

>
i . As covariance matrices are of this form, this means that

covariance matrices are rank-deficient if one has not collected enough data.

Note

• The definition of ’invertible’ in terms of linearly independent columns often
makes it easy to determine whether a matrix is invertible by inspecting
its columns:

– If any column is zero, the matrix is not invertible

– If two columns are the same, or one column is a multiple of the other,
it is not invertible.

• In fact, the rank of any matrix A is the same as the rank of its transpose,
A>. As a consequence, we can replace the ’columns’ in the definition of
rank by ’rows’. For determining the rank of a matrix, it is sometimes
easier to look at the columns, and sometimes easier to look at the rows.

♦

In the following section we will look deeper into the mechanics of matrices
and their properties. Especially, we will look at eigenvalues and eigenvectors,
an important concept of matrices which can be used for understanding and
analysing a big portion of all matrix equations. For example, it plays an impor-
tant role in Principal Component Analysis, known as PCA, which is one of the
most common algorithms for analysis data. We will also look at this algorithm
in more detail.
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2.4 Change of Basis
In the previous sections, we have heard that a matrix to a linear function is
always with respect to some basis and that the matrix changes, if the basis
does. Fortunately, changing a vector of coordinates or a matrix from one basis
to another is a linear function. Therefore, we can find a matrix to this function.
This is what we will look at in more detail in this section.

2.4.1 Coordinate Change of a Vector under a Change of
Basis

Let us develop the coordinate change along a simple example. Previously, we
have seen that

e1 =

(
1

0

)
, e2 =

(
0

1

)
and r1 =

(
cosφ

sinφ

)
, r2 =

(
− sinφ

cosφ

)
form orthonormal bases of R2. If we now look at the vector x =

(
cosφ
sinφ

)
, we can

see that its coordinates under the first basis are cosφ and sinφ, since

x = cosφ ·
(

1

0

)
+ sinφ ·

(
0

1

)
= cosφ · e1 + sinφ · e2.

Under the second basis the coordinates are 1 and 0, since

x = 1 ·
(

cosφ

sinφ

)
+ 0 ·

(
− sinφ

cosφ

)
= 1 · r1 + 0 · r2.

Hence, if we are looking for a matrix, that transforms the coordinates with
respect to the basis e1, e2 into coordinates of the same vector with respect
to basis r1, r2, this matrix should transform the coordinates

(
cosφ
sinφ

)
into the

coordinates
(

1
0

)
.

In order to find this matrix, we have to remember that a matrix of a linear
mapping must contain the results of the linear function on the basis vectors in
its columns. Therefore, what we are looking for is a matrix, that contains the
basis vectors of the old basis e1, e2 written in terms of the new basis r1, r2. If
we want to change from e1, e2 to r1, r2, we must express e1, e2 in terms of r1

and r2. Since both bases are orthonormal bases, we can use the dot product
trick, i.e.

e1 = 〈e1, r1〉r1 + 〈e1, r2〉r2

= cosφ · r1 − sinφr2

and

e2 = 〈e2, r1〉r1 + 〈e2, r2〉r2

= sinφ · r1 + cosφr2.
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Therefore, the coordinates of e1 and e2 with respect to the basis r1, r2 are
(cosφ,− sinφ)> and (sinφ, cosφ)>. If we write the new coordinates in the
column of a matrix, we get the matrix B that changes the coordinates from
basis e1, e2 to r1, r2:

B =

(
cosφ sinφ
− sinφ cosφ

)
.

Note, that B is just the transpose of the matrix R = (r1, r2), which contains
the new basis vectors r1, r2 as column vectors, i.e. B = R>. This is no surprise,
since

R>
(

1

0

)
=

(
〈e1, r1〉
〈e1, r2〉

)
and

R>
(

0

1

)
=

(
〈e2, r1〉
〈e2, r2〉

)
,

i.e. the multiplication of the coordinates of e1 and e2 with R> contains the
projections of e1 and e2 onto r1 and r2. From this observation, we can read of
another important theorem.

If we want to reverse the basis change, and change the coordinates of x with
respect to r1, r2 into coordinates with respect to e1, e2, we need a matrix that
contains the coordinates of r1 and r2 with respect to e1, e2 in its columns. But
this is just R. Let us now state this finding in a general theorem.

Theorem If v1, ...,vn and w1, ...,wn are two orthonormal bases, then the
matrix that changes the coordinates of a vector with respect to the first basis
into coordinates with respect to the second basis, can be found by the following
steps:

1. Express the basis w1, ...,wn in terms of the basis v1, ...,vn and write the
coordinates into the column of a matrix R.

2. The matrix, that changes the coordinates from v1, ...,vn to w1, ...,wn is
then given by R>.

3. The matrix that changes the coordinates from w1, ...,wn to v1, ...,vn is
given by R.

♦

Additionally to this theorem, we can find another useful theorem, that tells
us that the inverse of so called orthonormal matrix, are easy to find.

Definition (Orthonormal Matrix) Amatrix, which has orthonormal columns
or rows, is called orthonormal matrix.

♦
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Theorem The inverse of a orthonormal matrix B is given by its transpose,
i.e. B−1 = B>.

Proof:
The ijth entry of the matrix B>B contains the dot product between the

column vectors bi and bj , which are orthonormal by definition, i.e. 〈bi,bj〉 =
δij . Therefore, the matrix only contains ones on the diagonal, i.e. where i = j.
On the other hand, consider the identity matrix I. This matrix is an orthonormal
matrix, that contains the canonical basis in its columns. Therefore, the matrix
BB>I can be seen as changing from the orthonormal basis into the basis given
by the columns of B and back. Since nothing happens, when changing bases
back and forth, we have that BB>I = I and, therefore BB> = B>B = I, which
shows that B> is the inverse of B and vice versa.

�

2.4.2 Changing the Basis of a Matrix
Now that we have the tool to change the coordinates of a vector under the change
of coordinates, it is easy to adjust a matrix appropriately under a change of the
basis. Consider the two basis e1, e2 and r1, r2 of R2 again. Assume, that we are
given a matrix AE with respect to the first basis, but the coordinates (y1, y2)>

of a vector y = y1 · r1 + y2r2 with respect to the second. In order to be able
to use the matrix AE for (y1, y2)>, we need to transform it appropriately. But
since we know how to transform coordinates, it is easy to obtain the new matrix
AR with respect to r1, r2. The idea is to change the coordinates (y1, y2)> into
the basis e1, e2, apply AE and change the coordinates back. Each operation
can be done via a matrix multiplication. Therefore, we obtain the new matrix
AR by multiplying the single matrices.

Theorem

1. Let v1, ...,vn and w1, ...,wn be two orthonormal bases of Rn, and let
AV ∈ Rn×n be a square matrix with respect to the basis v1, ...,vn. We
obtain the equivalent matrix AW with respect to the basis w1, ...,wn by
the following operation:

AW = V︸︷︷︸
change V→W

AV︸︷︷︸
applyAV

V>︸︷︷︸
changeW→V

,

where V is the matrix that contains the coordinate vectors of v1, ...,vn
with respect to the basis w1, ...,wn, i.e. V> changes the coordinates from
w1, ...,wn to v1, ...,vn.

2. If the matrix A is not square, i.e. A ∈ Rm×n, we have two different bases:
A basis v1, ...,vn for the inputs and a basis a1, ...,am for the outputs, since
the linear function fA of A maps from Rn to Rm. If we want to change
the matrix A such that is does the equivalent operation, but with respect
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to two different basis w1, ...,wn and b1, ...,bm, we must multiply a matrix
MB

A from the left, that changes the coordinates from basis a1, ...,am to
b1, ...,bm, and a matrix MW

V from the right, that changes the coordinates
from v1, ...,vn to w1, ...,wn.

♦

Let us look at a few examples.

Examples

1. Consider the bases

e1 =

(
1

0

)
, e2 =

(
0

1

)
and r1 =

(
cosφ

sinφ

)
, r2 =

(
sinφ

cosφ

)
of R2again. If we apply the theorem above in order to change the identity

matrix I =

(
1 0
0 1

)
from the canonical basis to the basis r1, r2, we

obtain with R = (r1, r2):

IR = RIR>

= RIR>

= I,

since R is the inverse of R>and vice versa. This shows that the identity

matrix is always given by I =

(
1 0
0 1

)
no matter which orthonormal

basis we choose.

2. Consider the bases e1 =

 1
0
0

 , e2 =

 0
1
0

 , e3 =

 0
0
1

 of R3 and

e1 =
(

1
0

)
, e2 =

(
0
1

)
and r1 =

(
cosφ
sinφ

)
, r2 =

(
sinφ
cosφ

)
of R2. If we want to adapt

the projection matrix P =

(
1 0 0
0 1 0

)
such that it takes coordinates

with respect to e1, e2, e3 and yields coordinates with respect to r1, r2, we
need to do the following multiplication:

PRE = R>P

=

(
cosφ sinφ 0
− sinφ cosφ 0

)
,

which transforms the outcome of P into coordinates with respect to r1, r2.
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2.5 Eigenvalues and Eigenvectors
In this section we will look at a very important concept of matrices: eigenvalues
and eigenvectors. Eigenvalues and eigenvectors are mathematical objects that
can be derived from square matrices and which are tightly linked to the intrinsic
mechanic of a matrix. Eigenvalues play an important role in data analysis, since
they are a key ingredient of the Principal Component Analysis (PCA) algorithm.
We will first introduce eigenvalues and eigenvectors with an example, then make
a few general comments about eigenvalues and eigenvectors and their properties,
and then introduce PCA.

2.5.0.1 Eigenvalues and Eigenvectors

In one of the first sections we saw that a one-dimensional linear function can be
expressed by a single number: We compute the result of a linear function f(x)
on some value, say x0 = 1, obtain λ = f(x0) = f(1) and compute any other
value by f(x) = f(a · x0) = af(x0) = λ · a. Here, x0 serves as our basis in R1.
We express x in terms of x0, get the coordinate a and use the linearity so get it
into the form f(x) = λ · x.

Now we could ask the question, whether there are direction in space, such
that a multi-dimensional linear function can also be described by a single number
for every input along that direction. Those would be directions, that are tightly
linked to the mechanic of that function, since it takes this especially easy form
in that direction.

Let us have a look at, how those directions could look like.

Example Consider the matrix

A =

(
2 0
0 1

)
.

This matrix doubles the x1-coordinate and leaves the x2-coordinate untouched,
i.e.

A

(
x1

x2

)
=

(
2x1

x2

)
.

What are the directions in R2 that are tightly linked with the transformation
carried out by A? Considering the transformation of a vector x =

(
x1

x2

)
, we can

see that these two directions are the first coordinate direction (i.e. the direction
of the first basis vector) and the second coordinate direction, since A doubles
the length of a vector along the first and leaves a vector untouched along the
second direction. In other words, if a vector is given by y =

(
a
0

)
, then the result

of Ay =
(

2a
0

)
= 2y is just an elongated version of the input. The same is true

for an input z =
(

0
b

)
, since Az =

(
0
b

)
= z does not change the input vector z.

C
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If we generalize the example, we see that the directions from the example
before are exactly the ones that we were looking for: Given the direction and
an input vector x that has the same orientation, the linear mapping can be
described by one number, i.e. the scaling vector along that direction. This
means that the directions we are searching for, that are tightly linked to the
transformation carried out by a matrix A, are those directions in which a vector
is only scaled, but not rotated, i.e. the direction that does only affect the length,
but not the orientation of a vector when multiplied with A. This is the general
definition of a eigenvector. The amount of scaling in that direction is called
eigenvalue of A.

Definition Let A ∈ Rn×n be a square matrix. Any vector v 6= 0 that ful-
fills Av = λv is called eigenvector of A. The value λ is called eigenvalue of
A. Each eigenvector has its eigenvalue. However, the eigenvalues for different
eigenvectors might be the same.

Note, that if v is an eigenvector, then av with v ∈ R is an eigenvector,
too. Therefore, we can assume without loss of generality that eigenvectors have
length one, i.e. ||v|| = 1.

♦

How do we compute eigenvectors? In order to answer this question, let us
rewrite the definition of an eigenvector a little bit:

Av = λv

⇔ Av − λv = 0

⇔ (A− λI)v = 0.

This shows, that we are interested in a vector v ∈ Rn and a scalar λ ∈ R such
that the linear function given by the matrix (A − λI) maps v onto the zero-
vector. A trivial solution for this would be, to set v = 0, but this is not allowed
by the definition of an eigenvector. If v 6= 0, we must adjust λ and v such that
v lives in the nullspace of A.

Definition (Nullspace) The nullspace of a matrix A is the set of all vectors
v that are mapped onto the zero vector, i.e.

N (A) = {v ∈ Rn|Av = 0}.

♦

Example Consider the matrix

P =

 2 1 0
1 3 0
0 0 0

 .
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No matter what vector we feed into P, the x3-coordinate always gets mapped

into 0. This means that all vectors along the direction

 0
0
1

 are mapped onto

the zero vector. Therefore, the nullspace of P is given by

N (P) = {a · (0, 0, 1)>| a ∈ R}.

C

If the nullspace of a matrix contains any other element than zero, the matrix
is not invertible anymore. This is simply because the zero vector is always
mapped onto the zero vector by linear mappings. If another vector is mapped
into the zero vector, we would not know which vector we should assign to the zero
vector when inverting the linear mapping. Therefore, it cannot be invertible.

This brings us back to the question of how to compute the eigenvector and
the eigenvalues. We know now that (A−λI) must not be invertible. We already
saw that determinants can be used to check whether a matrix is invertible or
not. We can use that here. If a matrix is not invertible, then the determinant
must be zero. Therefore, we are searching for all λ ∈ R such that

det(A− λI) = 0.

Once we have the solutions to that equation, we can search for the eigenvec-
tors belonging to each solution. But let us look at a few examples first:

Examples

1. Let us start by the example from above

A =

(
2 0
0 1

)
.

The eigenvalues of A are given by the solution of

det

((
2 0
0 1

)
− λ

(
1 0
0 1

))
= det

((
2− λ 0

0 1− λ

))
0.

Determinants of diagonal matrices are easy to compute:

det

((
2− λ 0

0 1− λ

))
= (2− λ) · (1− λ).

We see that the determinant gives us a polynomial in λ. Since it is already
factorized we can read off the solutions as λ1 = 2 and λ2 = 1. Therefore
the eigenvalues of A are given by λ1 = 2 and λ2 = 1.
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2. Consider

A =

(
6 4
2 4

)
.

Let us do the same steps as in the example before:

det

((
6 4
2 4

)
− λ

(
1 0
0 1

))
= det

(
6− λ 4

2 4− λ

)
= (6− λ)(4− λ)− 2 · 4
= 24− 4λ− 6λ+ λ2 − 8

= λ2 − 10λ+ 16

= 0.

The solution can be found by solving this quadratic equation:

λ1,2 =
10±

√
100− 64

2

=
10± 6

2

=
10± 6

2
= 5± 3.

3. Consider the triangular matrix

A =

 1 1 1
0 2 2
0 0 3

 .

Since we know that the determinant of a triangular matrix is again just
the product of the diagonal terms

det(A− λI) = (1− λ)(2− λ)(3− λ).

If we set the determinant to zero, the cubic equation has the solutions
λ1 = 1, λ2 = 2 and λ3 = 3.

C

After the computation of the eigenvalues, we need to find the eigenvectors.
However, this is simple task. We can just use the definition of an eigenvector

Av = λv

⇔ (A− λI)v = 0.

Since we know λ now, the left hand side is just a matrix-vector multiplication,
or seen differently, a linear equation system. In order to get the eigenvector, we
must solve that for v. Let us look at our examples again.
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Examples

1. We already know that the eigenvalues of

A =

(
2 0
0 1

)
are given by λ1 = 2 and λ2 = 1. In order to get the eigenvector for λ1, we
must solve the following equation system((

2 0
0 1

)
− λ1

(
1 0
0 1

))
=

((
2 0
0 1

)
−
(

2 0
0 2

))
=

(
0 0
0 −1

)
v

=

(
0

0

)
.

Written down as an equation system

0 · v1 + 0 · v2 = 0

0 · v1 − v2 = 0.

Every vector v =
(
a
0

)
for arbitrary a is a solution to this equation. Since we

normalize eigenvectors for convenience, the solution is given by v1 =
(

1
0

)
.

Therefore the eigenvector to the eigenvalue λ1 = 2 is v1 =
(

1
0

)
. An

analogous computation yields v2 =
(

0
1

)
.

2. Before, we saw that the eigenvalues of

A =

(
6 4
2 4

)
are given by

λ1,2 = 5± 3.

Now, we do the same steps as in the example before. The linear equation
system for the first eigenvalue λ1 = 8 is given by

6v1 + 4v2 = 8v1

2v1 + 4v2 = 8v2,

which is equivalent to

−2v1 + 4v2 = 0

2v1 − 4v2 = 0.

Both equations are the same. Solving the first for v1 yields

v1 = 2v2.

Therefore, the normalized eigenvector to the eigenvalue λ1 = 8 is given by
v1 = 1√

3

(
2
1

)
. An analogous computation yields the eigenvector of λ2 = 2.

C
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2.5.0.2 Eigen Decomposition

Eigenvalues and eigenvectors are important tools to understand the function
behind a matrix A. Once we know along which directions vi only scales the
input, we get insight in what omitA is actually doing. In order to make this
more apparent, a matrix can be decomposed into a product of matrices, that
are built from eigenvectors and eigenvalues.

Theorem (Eigen Decomposition) Let A ∈ Rn×n be an arbitrary square
matrix and the eigenvalues of A be mutually distinct, i.e. λi 6= λj for i 6= j.
Then there exists a diagonal matrix

D =


λ1 0 . . . 0
0 λ2

0
. . . 0

. . . 0 λn


that hold the eigenvalues in the diagonal and a matrix U = (u1, ...,un) that
contains the eigenvectors to the eigenvalues λ1, ..., λn as column vectors, such
that

AU = UD.

Even if the eigenvalues are not distinct, i.e. λk1 = ... = λkr for ki 6= kj , then
there still exists such a decomposition if the eigenvectors corresponding to those
eigenvalues are linearly independent.

♦

Theorem (Eigen Basis) Let A ∈ Rn×n be an arbitrary square matrix.
Eigenvectors vi,vj to distinct eigenvalues λi 6= λj are linearly independent.
This implies that the eigenvectors to n mutually distinct eigenvalues form a
basis of Rn.

♦

These theorems sound very abstract. However, we can get an intuition
for them with the following considerations. Let us first look at the matrix
U. If we assume, that the eigenvalues of A are mutually distinct, then the
columns of U for a - not necessarily orthogonal- basis of Rn. This means that
multiplying a vector x with U as we would treat the entries of x as coordinates
with respect to the basis U and change its coordinates to the basis of A by
multiplying x with U. This holds true, even if the eigenvectors do not form an
orthonormal basis. Interpreted in that way the term AUx means, that we first
change the coordinates in x to the coordinates of A, by Ux and the apply the
transformation carried out by A via AUx.
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The theorem tells us, that this is the same as first scaling the coordinates
in x by multiplying it with D and then changing the basis to that of A. The
result of

Dx =


λ1x1

λ2x2

...
λnxn


is just x, but with every entry i scaled by the eigenvalue λi. This is exactly the
way how the eigenvalues and eigenvectors are linked to the transformation of A.
If we express a vector with respect to the eigenvectors, then the transformation
is only a rescaling of each coordinate.

Let us look at a few examples and then see how we can use this result.

Examples

1. The identity matrix I =


1 0 . . . 0
0 1

0
. . . 0

. . . 0 1

 is already diagonal. There-

fore, its eigenvectors are λ1 = ... = λn = 1 and the matrix U is the matrix
containing the canonical basis, i.e. U = (e1, ..., en) = I.

2. Consider the matrix(
cosφ − sinφ
sinφ cosφ

)(
2 0
0 1

)(
cosφ sinφ
− sinφ cosφ

)
=

(
cosφ − sinφ
sinφ cosφ

)(
2 cosφ 2 sinφ
− sinφ cosφ

)
=

(
2 cos2 φ+ sin2 φ 2 cosφ sinφ− cosφ sinφ

2 cosφ sinφ− cosφ sinφ 2 sin2 φ+ cos2 φ

)
.

This matrix changes the basis from e1, e2 to r1, r2 (see examples before),
doubles the first coordinate and changes the coordinates of the results
back to e1, e2. Therefore, the eigenvalues are λ1 = 2 and λ2 = 1 and the
corresponding eigenvectors are r1, r2.

3. Consider the matrix

 3 0 0
0 2 0
0 0 0

. This matrix multiplies the first co-

ordinate by three, doubles the second coordinate and sets the third coor-
dinate to zero. Since the matrix is already diagonal, the eigenvectors are
simply the canonical basis vectors. The eigenvalues are given by λ1 = 3,
λ2 = 2 and λ3 = 0.

C



CHAPTER 2. LINEAR ALGEBRA 112

From the third example we can see another important use of eigenvalues.
The matrix in example does not have full rank, since the third column is the
zero vector and therefore linearly dependent on both others. At the same time,
the eigenvalue corresponding to the third column is zero as well. We can look
at that as if the zero eigenvalue switches off the corresponding eigenvector. In
general, if we compute the eigendecomposition of a matrix and one or more of its
eigenvalues is zero, then the matrix does not have full rank, since all information
about that direction in space gets lost, when multiplying it with the diagonal
matrix, that contains the eigenvalues. There is a slightly more formal way of
stating this result.

Assume that we decompose A such that AU = UD or, equivalently, A =
UDU−1. If the eigenvalue of A are mutually distinct, we can invert U, since
its column vectors, the eigenvectors of A, are linearly independent. If A had
full rank, then its determinant must not be zero. But if one of the eigenvalues
equals zero, the determinant detD =

∏n
i=1 λi of the diagonal matrix will be

zero and so will be the determinant of A, since

detA = detUDU−1

= detU · detD · detU−1.

Therefore, as soon as one eigenvalue of A is zero, A does not have full rank and
is not invertible.

However, given the eigenvalues and eigenvectors of a matrix, we can do even
more than just saying if A is invertible or not. If it is, i.e. if A has mutually
distinct eigenvalues λ1 6= ... 6= λn 6= 0, then we can immediately compute the
inverse of A. It is given by A−1 = UD−1U−1, where

D−1 =


1
λ1

0 . . . 0

0 1
λ2

0
. . . 0

. . . 0 1
λn

 .

It is easy to see that this is indeed the inverse of A, since

AA−1 = UDU−1UD−1U−1

= UDD−1U−1

= UU−1

= I.

The same holds true for A−1A.

2.5.0.3 Eigenvalues and Eigenvectors of Symmetric Matrices

You might have noticed, that all matrices in the examples above, were symmet-
ric. This has a special reason: For a general eigenvalues decomposition, there
are two basic problems. First, there is no reason why the eigenvectors should
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be orthogonal to each other in the general case. This is unfortunate, since it
would be nice to express vectors in terms of the eigenvectors of a matrix, since
the operation of a matrix would become very simple in that case. However, we
have seen that non-orthogonal bases are difficult do deal with, so for general
matrices, changing into the eigenbasis is not an option.

The second problem is, that the eigenvalues might not be in R. For example,
if consider any rotation matrix R, it is difficult to find a vector v and a scalar
λ such that Rv = λv. However, if λ ∈ C, the set of all complex numbers, then
this is possible. However, for us it is more interesting to have eigenvalues in R.

Fortunately there is a class of matrices, that gives us both: Orthogonality
of the eigenvectors and real eigenvalues.

Theorem (Eigen Decomposition of Symmetric Matrices) Let A ∈
Rn×n be an arbitrary symmetric square matrix. Then there exists a diago-

nal matrix D =


λ1 0 . . . 0
0 λ2

0
. . . 0

. . . 0 λn

 that hold the eigenvalues λi ∈ R in

the diagonal and an orthonormal matrix U = (u1, ...,un) that contains the
eigenvectors to the eigenvalues λ1, ..., λn as column vectors, such that

AU = UD

or equivalently

A = UDU>,

i.e. the transformation with A is equivalent to changing into the eigenbasis,
rescaling the coordinates with the eigenvalues and changing the basis back.

♦

This property of symmetric matrices is the most important ingredient of the
principal component algorithm that we will look at now.
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2.6 Principal Component Analysis (PCA)
Example: PCA on chromatic pixels The first plot of Figure 2.2 shows the
histograms of the red (R), green (G) and blue (B) channel of a natural image.
We can see that the value are spread out over the whole dynamic range [0, 1].
The other plot in Figure 2.2 shows the RGB values as points in 3D. While the
histograms suggested that the whole dynamic range of the cube [0, 1]³ should
be covered, we can see that this is definitely not the case. In fact, the RGB
values are correlated and cover only a part of the color cube. The main axis
of correlation is vaguely (1, 1, 1)>, which corresponds to the luminance of the
three pixels.

♦

Image we wanted to encode each pixel value with a single neuron, i.e. we
wanted to find an axis along which we would get most of the information about
the three RGB values. This means we want to find a direction v ∈ R³ such that
the projection vi = 〈v,xi〉 of pixel values xi = (xredi , xgreeni , xbluei )> catches
most of the information about all our pixels xi in a Euclidean norm sense

v = argminv
1

m

m∑
i=1

||xi − 〈v,xi〉v||². (2.5)

Which direction should we take? Before we compute the direction from equation
(2.5), let us quickly spent some thought on what we would expect. Intuitively,
most information about a color pixel is preserved when we convert it into a
single gray value. However, this would mean that the axis, we are searching
for, is exactly the axis (1, 1, 1)> along which the color values have the largest
variance. We will see in the following that this is indeed the case.

Before we compute our direction v, we need to transform equation (2.5) a
little bit

1

m

m∑
i=1

||xi − 〈v,xi〉v||²

=
1

m

m∑
i=1

〈xi − 〈v,xi〉v,xi − 〈v,xi〉v〉

=
1

m

m∑
i=1

(
x>i xi − 2〈v,xi〉2 + 〈v,xi〉2v>v

)
.
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Figure 2.2: Left Top: Original natural image. Right Top: Histograms over
the red, green and blue channel of a natural image. Center Bottom:Scatter
plot of color pixel values in RGB space. The gray points on the side of the cube
are the marginal scatter plots, i.e. the projections on the respective coordinate
plane.

Since we are only interested in a direction, we can assume choose our vector
v to have length one ||v|| = 1. In fact we already implicitly assumed this when
we wrote the reconstruction of xi through v as 〈v,xi〉v. With ||v|| = 1, the
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equation becomes

1

m

m∑
i=1

(
x>i xi − 2〈v,xi〉2 + 〈v,xi〉2v>v

)
=

1

m

m∑
i=1

(
x>i xi − 2〈v,xi〉2 + 〈v,xi〉2

)
=

1

m

m∑
i=1

x>i xi −
1

m

m∑
i=1

〈v,xi〉2.

Note that if the xi had mean zero, i.e. 1
m

∑m
i=1 xi = 0, then 1

m

∑m
i=1〈v,xi〉2

would be the variance of the projections of the xi onto our direction v. We can
further rewrite this term into

1

m

m∑
i=1

〈v,xi〉2 =
1

m

m∑
i=1

〈v,xi〉〈xi,v〉

=
1

m

m∑
i=1

v>xi · x>i v

= v>

(
1

m

m∑
i=1

xi · x>i

)
v.

Again, for mean zero xi, 1
m

∑m
i=1 xi · x>i would be the covariance matrix of the

xi.
Now, let us turn to the question how we compute v. After all our transfor-

mations we are left with the problem

minimizev
1

m

m∑
i=1

x>i xi − v>

(
1

m

m∑
i=1

xi · x>i

)
v

s.t. ||v||² = 1.

Note that the first term 1
m

∑m
i=1 x

>
i xi does not depend on v at all, so we can

drop it from the optimization. Furthermore, note that minimizing−v>
(

1
m

∑m
i=1 xi · x>i

)
v

is the same as maximizing v>
(

1
m

∑m
i=1 xi · x>i

)
v. DenotingC = 1

m

∑m
i=1 xi ·x>i

we are therefore left with the final version of the problem

maximizev v>Cv

s.t. ||v||² = 1.

The straightforward way for computing v would be to compute the derivative,
set it to zero and solve for v. However that does not tell us how we can deal
with the constraint ||v|| = 1. In order to take it into account we need a method
called Lagrange multipliers. The Lagrange multiplier method is a way of solving
exactly those problems above. We will not formally introduce the method here,
but only give a rough intuition for the idea behind it.
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Remember that the gradient of a function always points into the direction of
maximal ascent. Looking at the constraint ||v||² = 1 or, equivalently, ||v||²−1 =
0 we can see that it describes a contour line of the function ||v||²−1. Intuitively,
since function is constant along the contour line, the gradient of ||v||²−1 will be
orthogonal to that contour line. Optimizing the function under the constraint
now means searching for the optimum along the contour line.

We now state the condition for optimality and then spent some though on
why that makes sense. The condition for optimality under the constraint can
be written as

∇
(
v>Cv

)
= λ∇(||v||²− 1).

The condition means that at the optimum, the gradient of the constraint must
have the same orientation as the gradient of the function. Why does that make
sense? First, imagine that the optimum of v>Cv without lies on the contour
line. Then, the gradient ∇

(
v>Cv

)
is zero and we simply set λ = 0 and the

condition is fulfilled. Now, assume that the optimum of v>Cv is not on the
contour line. Then, at some point, the only way to improve the function v>Cv
is to leave the constraint line, which is equivalent of saying that ∇

(
v>Cv

)
is

orthogonal to the constraint line. However, we noted before that ∇(||v||² − 1)
is always orthogonal to the constraint line. This means that the two gradients
have the same orientation and the condition is fulfilled as well.

Finally, note that we can write the condition for optimality as

maximizev v>Cv − λ (||v||²− 1)

because taking the derivative of v>Cv − λ (||v||²− 1) and setting it to zero
exactly yields ∇

(
v>Cv

)
= λ∇(||v||²− 1). The nice feature of the optimization

problem above is now, that it does not have constraints and we can simply solve
it by setting the derivative to zero and solve for v. In theory we also needed
to compute the derivative with respect to lambda and solve for it. However, in
this case there is a simple way.

The derivative with respect to v is given by

∂

∂v

(
v>Cv − λ (||v||²− 1)

)
=

∂

∂v

(
v>Cv − λv>v − λ

)
=

∂

∂v
v>Cv − λ ∂

∂v
v>v

= 2Cv − 2λv.

Setting it to zero yields

2Cv − 2λv = 0

⇔ Cv = λv.

This is exactly the condition for v being an eigenvector corresponding to the
largest eigenvalue λ of C. Luckily there are many algorithms that carry out
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this computation for us. For example, we can use the command eig in matlab.
If we assume again that the mean of the xi is zero, we can even compute the
variance of 〈xi,v〉:

1

m

m∑
i=1

〈xi,v〉2 = v>

(
1

m

m∑
i=1

xi · x>i

)
v

= v>Cv

= λv>v

= λ.

Since λ is the maximal eigenvalue of C, for mean zero signals finding the most
informative v is the same as finding the direction of maximal variance. This
is exactly what Principle Component Analysis (PCA) does. If the mean of the
xi is not zero, then, in general, v will not be the direction of maximal variance
but also point in the direction of the mean. That is the reason why the data is
usually centered, i.e. the mean is subtracted, before computing PCA.

In its complete version, the PCA algorithm usually computes all eigenvectors
instead of simply the largest one. As we saw in the last chapter about eigenval-
ues, symmetric matrices like C have eigenvectors that are mutually orthogonal
to each other. In terms of PCA this means that after computing the direction
of the largest variance, we compute the direction of largest variance which is
orthogonal to the first one and so on.

Example: PCA on chromatic pixels (con’d) Figure 2.3 shows the cen-
tered pixels and the pixels that have been transformed into the PCA basis. For
visualization we also transformed the RGB color planes along with the data.
Looking at the right plot of Figure 2.3 shows that the first principle component
(now the x-axis) indeed corresponds to the luminance axis. Furthermore, we
can observe that the second and third principle component (now the y- and the
z-axis, respectively) roughly corresponds to the blue-yellow and the red-green
channel, respectively. This is not an coincidence. In fact, this finding is very
stable of many natural images.
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Figure 2.3: Left: Scatter plot of centered chromatic natural image pixels.
Right: Scatter plot of color pixel values in PCA space. We can see that the
y-axis in the PCA basis roughly corresponds to the blue-yellow channel whereas
the z-axis roughly corresponds to the red-green channel. Both channels are also
found in the early visual system.
In both plots the color planes have been shifted with the pixels.

Interestingly, the same color opponencies are also found in the early visual
system. What could be the advantage of those channels? PCA can give as
an answer to that. Assume that C is the covariance matrix (i.e. the xi have
mean zero). Remember from the last chapter, that we can write a symmetric
matrix in terms of its eigenbasis as follows C = VΛV>, where the columns of
V correspond to the eigenvectors and Λ is a diagonal matrix that contains the
eigenvalues. Now, we can ask the question how C looks like in the basis V.
A quick computation shows that the transformation that has to be applied is
C 7→ V>CV. However, since C = VΛV> and V>V = VV> = I we know the
answer: In the PCA basis V>CV = Λ, i.e. the covariance matrix is diagonal.
This means that all off-diagonal terms are zero and, therefore, the signals are
uncorrelated. How could the visual system profit from uncorrelated signals?
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Figure 2.4: Image only represented by the first (left), second (middle) and third
(right) principal component in color space.

There are basically two reasons. Imagine, we use three neurons to signal
the value of each color pixel, either on neuron for each RGB channel or one
neuron for each principle component. Now we make two reasonable assumption
about our neurons: Firstly, our neurons have limited expressive power. This
means that they can only signal a finite number of pixel values. Secondly, our
neuron has limited capacity. This means it can only transmit a limited amount
of information in a given time window. For both cases, signalling in the PCA
basis is favorable for the neuron. Why is that the case? We already saw, that the
histograms in the RGB space covered the full dynamic range [0, 1]. A neuron,
which has limited expressive power, must distribute the pixel values, that it
wants to transmit over the whole dynamic range for all three color channels in
RGB space. This means that the resolution is very coarse. In the PCA basis
however, we can see from 2.3 that the histograms for the blue-yellow and the
red-green channel will be much more compressed. This means that the neurons
responsible for those channels, can spend their finite amount of states on that
range, thereby obtaining a finer resolution.

The PCA basis is also more favorable in terms of capacity. If a neuron
can only transmit a finite amount of information in a given time window, it
is not favorable if the three different signals are correlated or, in other words,
redundant (ignoring noise issues for the moment). The reason is simply that by
transmitting two correlated signals, each signal also transmits some information
about the other signal. Since our neurons can only signal a limited amount of
information in a given time window, the total amount of information that can
be transmitted becomes less when the signals are correlated. However, as we
have already seen above, signals are uncorrelated in the PCA basis. This means
that signalling in that representation is also favorable in terms of capacity.

♦
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3.1 Notation and Symbols
• The capital Greek letter sigma ”

∑
” (sigma like sum) denotes a sum over

several elements. Usually the components of the sum are indexed with
lower case roman letters starting from ”i”. The starting index is indicated
below the ”

∑
” and final index is indicated on top. For example, the sum

over n real numbers x1, ..., xn ∈ R is denoted by

x1 + ...+ xn =

n∑
i=1

xi.

Sometimes, when summing over all elements of a set, the set is indicated
below the sigma. For example, summing all elements of the set A =
{1, 2, 3, 4, ..., 15}, could be written as

∑
x∈A x as well as

∑15
n=1 n.

• The capital Greek letter pi ”Π” is used in an analogous manner for prod-
ucts, i.e.

x1 · ... · xn =

n∏
k=1

xk.
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