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About me ),
e Studied Mathematics and Psychology (LMU)

e Doctoral student in experimental psychology
since 2009, working for ( Oé?_%’

e Research Interests:
— Visual attention and memory

— Formal modelling and systems theory

— Philosophy of mind, Epistemology




Organisational Infos )

e Room: CIP-Pool (Leopoldstr. 11b)
e Dates: 01.06, 15.06 and 22.06. (WED)
e Time: 16:00 — 18:00

Slides, Materials and further information on

my homepage (=2 google , ratko-dehnert”)

Tutorial concept and aims [} ]

* Introducing some basic mathematical concepts

relevant for computational neuroscience

e Trying to take away the terror of mathematical

formalizations and notations

* Gaining hands-on experience with ,
an elaborate tool for simulating neural networks

and their dynamics




Outline )

01.06.: ODEs and Matrix Calculus

15.06.: Introducing Simbrain, labs on propagation,

node rules and vectors in neural networks

22.06: Pattern association, labs on Hebbian Learning

and Sensori-motor control; Evaluation

Grading of tutorial (i)

e 1st Session

— Handout with exercises to be solved in pairs

— Will be collected by the start of the 2nd Session
e 2nd and 3rd Session

— Solving simbrain labs in pairs; commenting on

handout in pairs




Literature

Essential Mathematics for Neuroscience (Fabian Sinz)

Mathematics for Computational Neuroscience &

Imaging (John Porrill)

Simbrain: A visual framework for neural network

analysis and education (Jeff Yoshimi)
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Calculus

In Calculus one is interested in
— solutions of functions

— derivatives of functions

— min/ max points

— limits of series

— integrals of functions, etc.

ﬂ _i".) =7 :p.w.l'.l?.':.i"l'l 1+1
f'{z) =sin(z ) + 22" scos{z”)
4-_ (2.8137, 3.8081)

(1.3552, 2.3076)

y-axis | (2.1945,-1.1828)
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Differential Equations

e A differential equation is a mathematical equation
for an unknown function of one or several
variables that relates the values of the function

itself and its derivatives of various orders, e.g.

d—u:cu+x2~ u(x)?

dx

Applications

 Which function’s slope matches the direction of the

flow field (defined by the ODE) at every point?

e Has furthered most parts of physics
— classical mechanics
— statistical mechanics

— dynamical systems

e But also applied fields like financial, biological and

neuro sciences
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e Ordinary Differential Equations (ODEs)
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— Newtons 2nd law of motion

— Growth processes

— Heat Equation

e Partial Differential Equations (PDEs)
— Wave Equation
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e Stochastic Differential Equations (SDEs)
— Black-Scholes Formula




Solutions? @ ‘
@ ©

Analytic?/
Explicit

Stability/

Linearity?
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THE HODGKIN-HUXLEY MODEL




Hodgkin-Huxley‘s model of a neuron

Input current
Lq‘m |
_____________ action pot.
t N
u(t) membrane pot. C = — R LI~
'

du -

— =—k-u(t)+m-I(t

dt (t) (t)

du 1 1

— =———-u(t)+—-I(

dt RC () C ()
Deriving the model 7~

e This is well-described by a very simple differential

equation called the leaky integrator equation

* Because every system obeying this equation can
be seen as a model for this, one can use a more
concrete example to illustrate the derivation and

system behaviour...




Filling a bath, when the plughole is open

19

Flow in ,

membrane pot. C=—

|

e u(t) = volume of water at time t

 |(t) = rate of flow in (volume/time)

20




Flow out b

 Now more physics know-how is needed

flow out oc pressure oc depth oc volume

flow out = k*u(t)

k constant scalar parameter

k>0: water flowin out (not in)

Evaluate change rate _.:..

Ccll—ltjzﬂowin—ﬂowout: 1 (t) =k -u(t)

Now we know:

e Dynamical system (evolves aroundt t)

Differential equation (relates du to u)

Linear in u

First order (highest derivative is du)

Constant coefficients (1, K)




Going back to Hodgkin-Huxley ...

du 1

d—— | (t) —k-u(t) A-E
du 1 1
du 1

e —I(t)—— u(t)

Exact integrator ... fva

e Special case: k=0 (i.e. no leakage)

?j—::J: | (1) @ U('[)ZI(INT)dZ‘-I—UO

u(t) =u +I | dr=u,+]l

max ]

—u, + [l t—=1__ -Ol=u,+1__ -t

max max




Sanity checks T

e \When will the bath be full?

u,+1... -t=u__ 7

max
t=t _ umax o uO
full I
max
Transient behaviour I

e Special case: setting I(t) =0

du _ AL —kt
E:—k-u(t) m u(t) = A-exp
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Leaky integrator sokdion defined
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Neo::'Whatisithe:Matrix?

Trinity: The 9nn$wer is‘aut there, Neo,

and it’s:looking for you,‘and it will find:’ :

.
is

you:if yo'u.vi(ant'_i?c to.

t i (The Matrix; 1999) -

Session 1.2

MATRIX CALCULUS
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What will we do -

 Examples where vector and matrix calculus

plays a role
* Reprise matrices and their operations

e Apply matrix notation to neural networks

McCulloch-Pitts neuron -

x4(1)

X 5(t)

axon

P y(t+1)

xn(t)

1, 0f Y wx(t) >0

t+1) = < .
4 0, if > wx(t) <6

J




Inner product of vectors -

y(t+1)

/Xl\ (1\

Pef )
W)=t 722
\ SN
Xo/) KWn)

Linear associator

e Here one would have
to compute inner
products for n*m

pairs of inputs and

outputs

e Alternatively ...




Matrix interpretation -

Regard the weights as a

coefficient matrix and

the inputs and outputs ¥

as vectors

But what does this

mean and how does U = W -V

one compute that?
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What is a matrix? -

* Def: A matrix A = (g;;) is an array of numbers or

variables

e |t has m rows and n columns (dim = (m, n) )

a]_,]_ a1’2 ce e o e ce e a‘:l_,n
A a?,l a, , :
_am’]- ce e ce e e ce e am’n_

) .




Connection to vectors -

e Trivially, every vector can be (Xl )
interpreted as a matrix X

e e.g.xisan (n, 1)-matrix X =

e Thus all the following statements X.i
hold true for them as well

an/

Equality of matrices -

e Two matrices are equal, if and only if (iff) the

have the same dimension (m, n) and all the

elements are identical

A=B < A =B, Vi, ]




How are matrices added up? -

Addition of two (2, 2)-matrices A, B performed

component-wise:

1 47 [2 -1
_|_
0 -2| |1 1

A B

— 7 _

PP

1 -1

A+B

Note that ,+“ is commutative, i.e. A+B = B+A

Scalar Multiplication

Scalar Multiplication of a (2, 2)-matrix A with a

scalar ¢

2

C

Again commutativity, i.e. c*A = A*c




Matrix multiplication

e Matrix multiplication of matrices C (2-by-3)
and D (3-by-2) to E (2-by-2).

_ _ 11 _ _

—0—-2 b 1
X 1=

-1 3 1 4 2

[ | O | |

C " b E

D
E, =13+0-2+2-1=5

Falk-Schema -

011 o12
A-B=C ||b,| |b, b,
031 032 033
a‘ll a12 a13 Cll ClZ C13
a‘21 a'22 a‘23 C21 C22 C23
a31 a‘32 a‘33 C31 C32 C33




Matrix specifics -

One can only multiply matrices if their dimensions

IWarning!

correspond, i.e. (m,n) * (n, k) 2 (m, k)
e And generally: if A*B exists, B*A need not

e Furthermore: if A*B, B*A exists, they need not be

equal!

Transposition -

e Transposition of a 2-by-3 matrix A > AT
|10
-|2 -6
_4 9 _

AT

1 2 4
0 6 9

A

* |t holds, that AT"= A.




Matrix inversion -

Square case, i.e. dim = (n, n)

e |f Ais regular (determinant is non-zero), then Al exists,
withA* Al=A1*A =]

Non-square matrices ( dim = (n, m))

A with dim =(n, m) has a right inverse B with dim (m, n),
if the rank of A is n and a left inverse B’ with dim (n, m),

if the rank of A is m.

e ItholdsthatA*B=1andB'*A=1_

Methods of inversion -

e Gauss-Jordan elimination algorithm

e Cramer’s Rule

e For dim = (2, 2) there exists a short and explicit

formula

a b]” 1 [d -b

d| ad-bc|-c a
|

Al =

1/ det(A)




Significance of matrices -

* Matrix calculus is relevant for

— Algebra: Solving systems linear equations (Ax = b)
— Statistics: LLS, covariance matrices of random variables
— Calculus: differentiation of multidimensional functions

— Physics: mechanics, linear combinations of quantum

states and many more

45

Back to linear associators -

u=W -v

46




Back to linear associators -

 We need different operations to address issues like

— What will be the output u of a given input v, when we

know the configuration of the weights W? --> u=W*v

— For a given output u and weight matrix W, what was the

input v? --> Wl*y=v

— Compute the weight matrix W for desired input/output

associations > u*vl=W




