Problem set

Computational neuroscience tutorial

Problem 1 (6 pts)
Verify the solution $u(t)=A \cdot \exp ^{-k t}+\frac{I(t)}{k}$ (1) of the leaky-integrator equation $\frac{d u}{d t}=-k \cdot u(t)+I(t)$ (2) by differentiating (1) with respect to t and inserting this to (2).

Problem 2 (4 pts)

Let $\mathbf{A}, \mathbf{B}, \mathbf{C}$ be the matrices

$$
A=\left(\begin{array}{ccc}
2 & 5 & 0 \\
-2 & 1 & -1
\end{array}\right) \quad B=\left(\begin{array}{c}
4 \\
7 \\
-1
\end{array}\right) \quad C=\left(\begin{array}{ll}
3 & -3
\end{array}\right)
$$

Compute the following products (where possible):
a) $\mathbf{A * B}$
b) B*A
c) $A^{*} \mathbf{C}$
d) \mathbf{C} *
e) $B^{*} \mathbf{C}$
f) $C * B$

Problem 3 (3 pts)

Compute the product of the variable matrices D, E. You may use the Falk-Schema for simplicity.

$$
D=\left(\begin{array}{ccc}
s & 0 & -t \\
1 & v & w
\end{array}\right) \quad E=\left(\begin{array}{ccc}
1 & 1 & x \\
-y & 0 & 0 \\
0 & -z & -1
\end{array}\right)
$$

Problem 4 (3 pts)
a) Use the explicit formula from the tutorial to compute the inverse matrices of \mathbf{F}, \mathbf{G} :

$$
F=\left(\begin{array}{ll}
3 & 7 \\
1 & 2
\end{array}\right) \quad G=\left(\begin{array}{ll}
3 & 6 \\
1 & 2
\end{array}\right)
$$

b) Validate the results by computing $\mathbf{F}^{*} \mathbf{F}^{-\mathbf{1}}$ and $\mathbf{G}^{*} \mathbf{G}^{-\mathbf{1}}$

Problem 5 (3 pts)

Think of a simple (but non-trivial) example of matrices with dimension (2,2), where

$$
H \cdot J \neq J \cdot H .
$$

Problem 6 (5 pts)

Given the linear associator in this scheme with weight matrix W

a) Explicate the dimensions of \mathbf{u} and \mathbf{v}.
b) What output \mathbf{u} is generated by an input $v=\left(\begin{array}{llll}1 & 0 & 1 & 0.5\end{array}\right)^{T}$?
c) Which synapses between $\mathbf{v}_{\mathbf{i}}$ and $\mathbf{u}_{\mathbf{j}}$ are missing and how can you tell that from W ?
d) What output \mathbf{u}^{\prime} would you expect for $\mathbf{v}^{\prime}=\mathbf{2}^{*} \mathbf{v}$?

