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Hebbian Pattern Association 

Let us consider one of the most basic methods of pattern association in the literature: 

Hebb rule itself was described in LAB 4

following rule: At every time step, we change each weight by the product of a learning rate 

source/input activation, and the target

 

Simple Heteroassociative Network 

Suppose we want to train a network to perform

source vectors with their correspoding target vectors.

That is, we want a network which implements a vector valued function from a three

dimensional vector space to a two dimensional vector space.

Teaching the network this task isn't too hard

• Create the network shown to the right

• Make all neurons clamped 

• Set all weights to 0 (W then C) 

• Make the weights Hebbian and set the learning rate to 

Now set the activations of the source nodes to correspond to the 

first pattern, and those of the target nodes to correspond to

Now iterate the workspace. The weights will be updated according to the Hebb rule, and our first association 

has been formed. You will notice the synapses change color and size. As an exercise, try to say what the ne

weights values are. 

(Note that you must only iterate the network once. If you keep doing it the weights will keep increasing or 

decreasing in magnitude until they reach their maximum or minimum value. This sensitivity is one of the 

problematic features of Hebbian learning.)

We now repeat the process for the other two source / target associations. This completes the 

of this task. Now we enter a testing phase

associations. Will it recall the right target pattern given a source pattern? Has it properly implemented the 

vector-valued function above? 
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Let us consider one of the most basic methods of pattern association in the literature: 

LAB 4. To repeat, it is a learning rule which adjusts weights according to the 

At every time step, we change each weight by the product of a learning rate 

activation, and the target/ output activation. "Neurons that fire together wire together."

Suppose we want to train a network to perform the following task: Associate the 

correspoding target vectors. 

That is, we want a network which implements a vector valued function from a three

dimensional vector space to a two dimensional vector space. 

Teaching the network this task isn't too hard: 

reate the network shown to the right 

 

and set the learning rate to 1. 

Now set the activations of the source nodes to correspond to the 

first pattern, and those of the target nodes to correspond to the second pattern (see illustration).

the workspace. The weights will be updated according to the Hebb rule, and our first association 

has been formed. You will notice the synapses change color and size. As an exercise, try to say what the ne

(Note that you must only iterate the network once. If you keep doing it the weights will keep increasing or 

decreasing in magnitude until they reach their maximum or minimum value. This sensitivity is one of the 

f Hebbian learning.) 

We now repeat the process for the other two source / target associations. This completes the 

testing phase. We want to test the network to see how well it can recall these 

it recall the right target pattern given a source pattern? Has it properly implemented the 
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Let us consider one of the most basic methods of pattern association in the literature: Hebbian learning. The 

repeat, it is a learning rule which adjusts weights according to the 

At every time step, we change each weight by the product of a learning rate epsilon, the 

ether wire together." 

ssociate the 

That is, we want a network which implements a vector valued function from a three-

the second pattern (see illustration). 

the workspace. The weights will be updated according to the Hebb rule, and our first association 

has been formed. You will notice the synapses change color and size. As an exercise, try to say what the new 

(Note that you must only iterate the network once. If you keep doing it the weights will keep increasing or 

decreasing in magnitude until they reach their maximum or minimum value. This sensitivity is one of the 

We now repeat the process for the other two source / target associations. This completes the training phase 

. We want to test the network to see how well it can recall these 

it recall the right target pattern given a source pattern? Has it properly implemented the 

Source Target 

(1,  0,  0) (   1,  0.4) 

(0,  1,  0) (0.8,  0.2) 

(0,  0,  1) (0.5,  0.7) 
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To test the network, we need to do two things. First, we must clamp all the synapses; we must turn learning 

off. To do this press the Clamp Weights

neurons, by toggling the Clamp Neurons

Now we are ready to test. For the first input pattern, set the input nodes to 

workspace. The output neurons should produce the correct pattern, 

Note also that the network generalizes fairly well. For example, try the pattern 

less the same output as (1, 0, 0). A related point is that the network does ok with noisy inputs, and degrades 

somewhat gracefully (though given the size of the network its degradation under loss of weights is not great).

 

Qualities of the input space 

The effectiveness of Hebbian pattern a

the input patterns are too similar, they will cause the same weights to be trained, and this will interfere with 

recall later on. This is sometimes called 

The best case is the case where all the input vectors are 

product is 0). Why does this help the pattern associator learn? Let's focus on the case of binary vectors. 

Roughly speaking, orthogonal input vectors don't step on e

with orthogonal vectors which are binary. Consider: binary input vectors produce an activity of 

input nodes and 0's everywhere else. If they are orthogonal, they produce 

that the various input vectors give rise to learning on different weights. 

The thing to remember is that Hebbian pattern associators can learn associations when all the input vectors 

are orthogonal. Otherwise there will be cross

 

Simple Auto-associative network 

We now consider a recurrent, auto-associative network trained using the 

Hebb law. Recall that an auto-associative network is trained to associate 

patterns with themselves. What is attractive about these networks is that 

they provide a biologically realistic model for the formation of memories. 

They also do well at such tasks as pattern completion.

In this section we study very simple networks of neurons using linear 

activation functions with slope 1 (the identity function), which lack self

connections but are otherwise fully interconnected
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To test the network, we need to do two things. First, we must clamp all the synapses; we must turn learning 

Clamp Weights button in the network toolbar. Second, we need to unclamp the 

Clamp Neurons button to be off. 

Now we are ready to test. For the first input pattern, set the input nodes to 

workspace. The output neurons should produce the correct pattern, (1, 0.4). Similarly for the other inputs.

alizes fairly well. For example, try the pattern (1, 0.1, 0) 

A related point is that the network does ok with noisy inputs, and degrades 

somewhat gracefully (though given the size of the network its degradation under loss of weights is not great).

The effectiveness of Hebbian pattern association depends on the nature of the input patterns being learned. If 

the input patterns are too similar, they will cause the same weights to be trained, and this will interfere with 

recall later on. This is sometimes called cross-talk. 

the case where all the input vectors are orthogonal (for us, this means vectors whose dot 

). Why does this help the pattern associator learn? Let's focus on the case of binary vectors. 

Roughly speaking, orthogonal input vectors don't step on each other's toes, and this is especially apparent 

with orthogonal vectors which are binary. Consider: binary input vectors produce an activity of 

's everywhere else. If they are orthogonal, they produce 1's on different nodes. Th

that the various input vectors give rise to learning on different weights. So there is no cross

The thing to remember is that Hebbian pattern associators can learn associations when all the input vectors 

be cross-talk and perfect learning is not guaranteed.

associative network trained using the 

associative network is trained to associate 

ves. What is attractive about these networks is that 

they provide a biologically realistic model for the formation of memories. 

They also do well at such tasks as pattern completion. 

In this section we study very simple networks of neurons using linear 

(the identity function), which lack self-

fully interconnected. The synapses start off at 0, and we assume a learning
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To test the network, we need to do two things. First, we must clamp all the synapses; we must turn learning 

Second, we need to unclamp the 

Now we are ready to test. For the first input pattern, set the input nodes to (1, 0, 0), and iterate the 

Similarly for the other inputs. 

(1, 0.1, 0) it produces more or 

A related point is that the network does ok with noisy inputs, and degrades 

somewhat gracefully (though given the size of the network its degradation under loss of weights is not great). 

ssociation depends on the nature of the input patterns being learned. If 

the input patterns are too similar, they will cause the same weights to be trained, and this will interfere with 

(for us, this means vectors whose dot 

). Why does this help the pattern associator learn? Let's focus on the case of binary vectors. 

ach other's toes, and this is especially apparent 

with orthogonal vectors which are binary. Consider: binary input vectors produce an activity of 1 in some 

's on different nodes. That means 

So there is no cross-talk.  

The thing to remember is that Hebbian pattern associators can learn associations when all the input vectors 

talk and perfect learning is not guaranteed. 

, and we assume a learning 
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rate of 1. (Such network are also called "

models). 

• Now load the network AutoAssoc9.xml

To train the network, create a pattern in its nodes, as above. Be sure the neu

Clamp neurons button and that the weights are not clamped. Now select some nodes (three or more) and 

press the up button to add an activation of 

neurons "wire together" in that the connections between them turn red (what will their value be after this 

one iteration?). 

Note that when creating patterns the wand tool 

all weights then clear them). It is also helpful to press 

down buttons to quickly set the network state.

the neurons. Now add part of the input of the pattern you trained it on, and 

It should reproduce the pattern you trained it on. It's easy to see why: all the synapses which were trained 

form a subset of the network's nodes connected by positiv

as an ensemble. Also, note that this network will perform fairly well even if some synapses are removed 

(graceful degradation) or if you add noise to the input; in fact the partial input can be thought of

input. 

You can also look at this network in terms of a 

activation states (by selecting all neurons and pressing the randomize button) and iterate, you will note that it 

either settles into the pattern you created or to its 

You can visualize this by opening a projection plot

• Click   and then Projection Plot.

• Now couple your network to this plot by clicking 

Any point in activation space will evolve to one of these two attracting fixed points. Thus you have, via 

learning, created two attractors corresponding to this pattern and its dual.

We just now trained this network on a single binary input vector. What if we 

pattern? Various interesting things can be observed. If the second pattern overlaps the first (in which case the 

two input vectors are not orthogonal), then during recall any partial version of either pattern will produce the 

two patterns together. Why this happens makes sense: in the training the network on the second vector you 

essentially added on to the network of positively connected neurons.
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. (Such network are also called "linear auto-associators" and are related to "brain

AutoAssoc9.xml via File --> Open Network. 

the network, create a pattern in its nodes, as above. Be sure the neurons are clamped by using the 

and that the weights are not clamped. Now select some nodes (three or more) and 

to add an activation of 1. Iterate the network a single time, and you will see that co

re together" in that the connections between them turn red (what will their value be after this 

wand tool helps. To start over quickly press 

all weights then clear them). It is also helpful to press "N" (to select all neurons) and then to press the 

to quickly set the network state. To test the network for recall, clamp the weights

part of the input of the pattern you trained it on, and iterate

It should reproduce the pattern you trained it on. It's easy to see why: all the synapses which were trained 

form a subset of the network's nodes connected by positive weights. They have been trained to fire together, 

as an ensemble. Also, note that this network will perform fairly well even if some synapses are removed 

) or if you add noise to the input; in fact the partial input can be thought of

You can also look at this network in terms of a dynamical systems theory. If you put the network in to random 

activation states (by selecting all neurons and pressing the randomize button) and iterate, you will note that it 

ern you created or to its "dual", a pattern of -1's on the same neurons.

projection plot  

and then Projection Plot. 

Now couple your network to this plot by clicking Couple --> Projection1. 

point in activation space will evolve to one of these two attracting fixed points. Thus you have, via 

corresponding to this pattern and its dual. 

We just now trained this network on a single binary input vector. What if we 

pattern? Various interesting things can be observed. If the second pattern overlaps the first (in which case the 

two input vectors are not orthogonal), then during recall any partial version of either pattern will produce the 

patterns together. Why this happens makes sense: in the training the network on the second vector you 

essentially added on to the network of positively connected neurons. 
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" and are related to "brain-state-in-a-box" 

rons are clamped by using the 

and that the weights are not clamped. Now select some nodes (three or more) and 

the network a single time, and you will see that co-active 

re together" in that the connections between them turn red (what will their value be after this 

helps. To start over quickly press "W" and then "C" (to select 

(to select all neurons) and then to press the up and 

clamp the weights and unclamp 

iterate the network a few times. 

It should reproduce the pattern you trained it on. It's easy to see why: all the synapses which were trained 

e weights. They have been trained to fire together, 

as an ensemble. Also, note that this network will perform fairly well even if some synapses are removed 

) or if you add noise to the input; in fact the partial input can be thought of as a noisy 

. If you put the network in to random 

activation states (by selecting all neurons and pressing the randomize button) and iterate, you will note that it 

's on the same neurons. 

point in activation space will evolve to one of these two attracting fixed points. Thus you have, via 

We just now trained this network on a single binary input vector. What if we try to train it on another 

pattern? Various interesting things can be observed. If the second pattern overlaps the first (in which case the 

two input vectors are not orthogonal), then during recall any partial version of either pattern will produce the 

patterns together. Why this happens makes sense: in the training the network on the second vector you 
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To address this problem, we can use bipolar patterns. The pattern above in 

bipolar form looks like this: 

Do the same procedure as above, training the network on a few patterns. You 

will notice that this time, after training, all the non

inhibitory. This time, you can allow the training patterns to 

some cases it will still remember them. In other cases, however, the last pattern 

you trained the network on will dominate.

 

Since bipolar patterns are being used, when patterns are recalled, not only is the whole pattern activated bu

other nodes are inhibited, they take on negative values. This makes it possible to store overlapping patterns. If 

you store two patterns with just one overlapping unit, for example, you will notice that both can be 

independently recalled. The reason is t

 

You will also notice new patterns, which are, as it were, byproducts of the first two: these are sometimes 

called spurious memories. In the case of a network trained on 

they correspond to the compliment of the trained pattern (that is, the pattern formed by 

 

These techniques can be scaled up to networks with more neurons. 

network with 25 neurons and then teaching it various letters of the alphabet.

 

Another problem we run into with these networks is oscillations. The network does not always settle down 

into a stable fixed point. In terms of dynamical systems theory, we can observe 

space. This second problem can be solved by changing the way we update neurons. One way this is done is 

using "Hopfield networks". We will not cover them in this tutorial, though.
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To address this problem, we can use bipolar patterns. The pattern above in 

Do the same procedure as above, training the network on a few patterns. You 

will notice that this time, after training, all the non-excitatory weights become 

inhibitory. This time, you can allow the training patterns to overlap a bit, and in 

some cases it will still remember them. In other cases, however, the last pattern 

you trained the network on will dominate. 

Since bipolar patterns are being used, when patterns are recalled, not only is the whole pattern activated bu

other nodes are inhibited, they take on negative values. This makes it possible to store overlapping patterns. If 

you store two patterns with just one overlapping unit, for example, you will notice that both can be 

independently recalled. The reason is that activating one pattern simultaneously represses

You will also notice new patterns, which are, as it were, byproducts of the first two: these are sometimes 

. In the case of a network trained on 1 bipolar pattern, thes

they correspond to the compliment of the trained pattern (that is, the pattern formed by 

These techniques can be scaled up to networks with more neurons. (One experiment you can try is creating a 

25 neurons and then teaching it various letters of the alphabet.) 

Another problem we run into with these networks is oscillations. The network does not always settle down 

into a stable fixed point. In terms of dynamical systems theory, we can observe peri

space. This second problem can be solved by changing the way we update neurons. One way this is done is 

. We will not cover them in this tutorial, though. 
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Since bipolar patterns are being used, when patterns are recalled, not only is the whole pattern activated but 

other nodes are inhibited, they take on negative values. This makes it possible to store overlapping patterns. If 

you store two patterns with just one overlapping unit, for example, you will notice that both can be 

represses the other. 

You will also notice new patterns, which are, as it were, byproducts of the first two: these are sometimes 

bipolar pattern, these are easy to predict: 

they correspond to the compliment of the trained pattern (that is, the pattern formed by -1's rather than 1's). 

One experiment you can try is creating a 

Another problem we run into with these networks is oscillations. The network does not always settle down 

periodic orbits in activation 

space. This second problem can be solved by changing the way we update neurons. One way this is done is 


