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Tutorial aims

• Basic mathematical concepts relevant for 

computational neuroscience

• Hands-on experience with • Hands-on experience with 

(neural networks simulator)
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Organisational Infos

Room: small mensa CIP-Pool

Dates: 23.05. Basic Maths for Comp. Neuros. 

30.05., 06.06., 13.06. simbrain labs 1- 630.05., 06.06., 13.06. simbrain labs 1- 6

Time : 10:00 – 12:00 (s.t.)

Materials: via dropbox and/or on my homepage

Grading: math sheet + active lab participation
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Literature

1. Essential Mathematics for Neuroscience (Fabian Sinz)

2. Mathematics for Computational Neuroscience & 

Imaging (John Porrill)

3. Simbrain: A visual framework for neural network 

analysis and education (Jeff Yoshimi)
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MATRIX CALCULUS

Session 1.1
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Matrices relevant for...

• Algebra: Solving systems linear equations (Ax = b)

• Statistics: LLS, covariance matrices of random variables

• Calculus: differentiation of multidimensional functions

• Physics: mechanics, linear combinations of quantum 

states and many more

• Here: Modelling neural dynamics (e.g. propagation of 

activity across a neural net)
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McCulloch-Pitts neuron
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Inner product of vectors
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Linear associator

• n*m inner products(!)
u1 u2 um

...

• Alternative: Use 

matrix calculus ...
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Matrix interpretation

• Weights = coeff. matrix W

• Inputs/ Outputs = vectors 

v, u

u1 u2 um
...

...

w11

w12

wvm

v, u
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What is a matrix?

• Def: A matrix A = (ai,j) is an array of numbers or 

variables

• It has m rows and n columns (dim = (m, n) )
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Connection to vectors

• Trivially, every vector can be interpreted 

as a matrix
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• e.g. x is an (n, 1)-matrix

• Thus all the following statements hold 

true for them as well
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Equality of matrices

• Two matrices are equal, if and only if (iff) the 

have the same dimension (m, n) and all the 

elements are identicalelements are identical
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How are matrices added up?

• Addition of two (2, 2)-matrices A, B performed 

component-wise:

 − 331241

• Note that „+“ is commutative, i.e. A+B = B+A
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Scalar Multiplication

• Scalar Multiplication of a (2, 2)-matrix A with a 

scalar c

 8241

• Again commutativity, i.e. c*A = A*c
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Matrix multiplication

• Matrix multiplication of matrices C (2-by-3) 

and D (3-by-2) to E (2-by-2):
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Falk-Schema

333231

232221

131211

bbb

bbb

bbb

CBA =⋅

17

333231333231

232221232221

131211131211

333231

cccaaa

cccaaa

cccaaa

bbb



Matrix specifics

!Warning!

One can only multiply matrices if their dimensions 

correspond, i.e.    (m,n) * (n, k) ���� (m, k)correspond, i.e.    (m,n) * (n, k) ���� (m, k)

• And generally: if A*B exists, B*A need not

• Furthermore: if A*B, B*A exists, they need not be 

equal!
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Transposition

• Transposition of a 2-by-3 matrix A � AT
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• It holds, that ATT= A.
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Matrix inversion

Square case, i.e. dim = (n, n)

• If A is regular (determinant is non-zero), then A-1 exists, 

with A * A-1 = A-1 * A = In

Non-square matrices ( dim = (n, m) )Non-square matrices ( dim = (n, m) )

• A with dim = (n, m) has a right inverse B with dim (m, n), 

if the rank of A is n and a left inverse B‘ with dim (n, m), 

if the rank of A is m.

• It holds that A * B = In and B‘ * A = Im
20



Methods of inversion

• Gauss-Jordan elimination algorithm

• Cramer‘s Rule

• For dim = (2, 2) there exists a short and explicit • For dim = (2, 2) there exists a short and explicit 

formula
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Back to linear associators

u1 u2 um
...

w11 wvm

vWu ⋅=
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Back to linear associators

• We need different operations to address issues like

– What will be the output u of a given input v, when we 

vWu ⋅=

know the configuration of the weights W? --> u=W*v

– For a given output u and weight matrix W, what was the 

input v? --> W-1*u = v

– Compute the weight matrix W for desired input/output 

associations v/u. --> u*v-1 = W 23



DIFFERENTIAL EQUATIONS

Session 1.2
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In calculus...

• one is generally interested in

– solutions of functions

– derivatives of functions– derivatives of functions

– min/ max points

– limits of series/ convergence

– integrals of functions, etc.
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In calculus...
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Differential Equation

• is a mathematical equation for an unknown 

function u(x) that relates the values of u(x) and its 

derivatives u’(x), u’’(x), …derivatives u’(x), u’’(x), …
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Applications

• Which function‘s slope matches the direction of the 

flow field (defined by the ODE) at every point? 

• Has furthered most parts of physics

– classical mechanics– classical mechanics

– statistical mechanics

– dynamical systems

• But also applied fields like financial, biological and 

neurosciences
28



Applications
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Classification

• Ordinary Differential Equations (ODEs)

– Growth processes; Newtons 2nd law of motion

• Partial Differential Equations (PDEs)• Partial Differential Equations (PDEs)

– Heat Equation, Wave Equation

• Stochastic Differential Equations (SDEs)

– Black-Scholes Formula

30



ODEs PDEs SDEs

Solutions?

Unique?

31

Analytic?/ 

Explicit

Stability/

Linearity?



THE HODGKIN-HUXLEY MODEL
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Hodgkin-Huxley‘s model of a neuron

u(t)
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Deriving the model

• This is well-described by a very simple differential 

equation called the leaky integrator equation

• Because every system obeying this equation can • Because every system obeying this equation can 

be seen as a model for this, one can use a more 

concrete example to illustrate the derivation and 

system behaviour...
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„Filling a bath, when the plughole is open“
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Flow in

• u(t) = volume of water at time t

• I(t) = rate of flow in (volume/time)
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Flow out

• Now more physics know-how is needed

• flow out = k*u(t)

volumedepthpressureoutflow ∝∝∝

• flow out = k*u(t)

• k constant scalar parameter

• k>0: water flowin out (not in)
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Evaluate change rate

)()(outflowinflow tuktI
dt

du ⋅−=−=

Now we know:

• Dynamical system (evolves around t)
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• Dynamical system (evolves around t)

• Differential equation (relates du to u)

• Linear in u

• First order (highest derivative is du)

• Constant coefficients (1, K)



Going back to Hodgkin-Huxley
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Exact integrator

• Special case: k = 0 (i.e. no leakage)

)(tI
dt

du = FTC 00
)()( udItu
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+= ∫ ττ
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Sanity checks

maxmax0 ?utIu =⋅+

• When will the bath be full?
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Transient behaviour

• Special case: setting I(t) = 0

)(tuk
dt

du ⋅−= ktAtu −⋅= exp)(Intuition
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Next week -> simulating with simbrain 


