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Tutorial aims o

Basic mathematical concepts relevant for

computational neuroscience

Hands-on experience with

(neural networks simulator)




Organisational Infos &)

Room: small mensa CIP-Pool

Dates: 23.05. Basic Maths for Comp. Neuros.
30.05., 06.06., 13.06. simbrain labs 1- 6

Time : 10:00 — 12:00 (s.t.)

Materials: via dropbox and/or on my homepage

Grading: math sheet + active lab participation




Literature %

Essential Mathematics for Neuroscience (Fabian Sinz)

Mathematics for Computational Neuroscience &

Imaging (John Porrill)

Simbrain: A visual framework for neural network

analysis and education (Jeff Yoshimi)




Session 1.1

MATRIX CALCULUS




Ole= 7|5
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Matrices relevant for... L5

Algebra: Solving systems linear equations (Ax = b)
Statistics: LLS, covariance matrices of random variables
Calculus: differentiation of multidimensional functions

Physics: mechanics, linear combinations of quantum

states and many more

Here: Modelling neural dynamics (e.g. propagation of

activity across a neural net)
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Inner product of vectors
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Linear associator

* n*m inner products(!)

e Alternative: Use

matrix calculus ...

Oje={ 7|7
™ | & F|F




 Weights = coeff. matrix W

e Inputs/ Outputs = vectors

V, U

Matrix interpretation
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What is a matrix?

Oje={ 7|7
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* Def: A matrix A = (a;;) is an array of numbers or

variables

e |t has m rows and n columns (dim = (m, n) )
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Connection to vectors

e Trivially, every vector can be interpreted

as a matrix

e e.g.xis an (n, 1)-matrix X =

 Thus all the following statements hold

true for them as well




Equality of matrices

Ole= 7|5
SF

e Two matrices are equal, if and only if (iff) the

have the same dimension (m, n) and all the

elements are identical

A=B « A, =B,
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How are matrices added up? .

e Addition of two (2, 2)-matrices A, B performed

component-wise:

—

1 4] [2 -1 _[3 3
0 -2/ |1 1] |11
A B A+B

e Note that ,,+“ is commutative, i.e. A+B = B+A
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Scalar Multiplication

e Scalar Multiplication of a (2, 2)-matrix A with a

scalar ¢

2
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e Again commutativity, i.e. c*A =A*c
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Matrix multiplication

~ B _
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e Matrix multiplication of matrices C (2-by-3) _

and D (3-by-2) to E (2-by-2):
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Falk-Schema
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Matrix specifics 1= =S

IWarning!

One can only multiply matrices if their dimensions
correspond, i.e. (m,n) * (n, k) =2 (m, k)

 And generally: if A*B exists, B*A need not

 Furthermore: if A*B, B*A exists, they need not be

equal!




Qe 77| @

Transposition [

e Transposition of a 2-by-3 matrix A > AT
1 0
2 —6
_4 9 _

AT

1 2 4
0 -6 9

A

e |t holds, that A= A.
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Matrix inversion i s

Square case, i.e. dim = (n, n)

e |f Ais regular (determinant is non-zero), then A1 exists,
withA* Al=Al*A=|

Non-square matrices ( dim =(n, m))

e A with dim =(n, m) has a right inverse B with dim (m, n),
if the rank of A is n and a left inverse B’ with dim (n, m),

if the rank of A is m.

e ItholdsthatA*B=1 andB‘*A=1_




Methods of inversion e

Oje={ 7|7
™ | & F|F

* Gauss-Jordan elimination algorithm

e Cramer’s Rule

e Fordim = (2, 2) there exists a short and explicit

formula

At =
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Back to linear associators




Oje={ 7|7
&2

Back to linear associators [
u=WI1v

 \We need different operations to address issues like

— What will be the output u of a given input v, when we

know the configuration of the weights W? -->

— For a given output u and weight matrix W, what was the

input v? -->

— Compute the weight matrix W for desired input/output

associations LD




u' = cos(t u)
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Session 1.2 . 1 & O

DIFFERENTIALEQUATIONS

4
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In calculus...

* one is generally interested in
— solutions of functions
— derivatives of functions
— min/ max points
— limits of series/ convergence

— integrals of functions, etc.
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flz) =z xsin(z” ) +1
f'iz) =sin(z® ) +2z° scos(z” )

al (2.8137, 3.8081)

(1.3552, 2.3076)

y-axis | (2.1945,-1.1828)
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Differential Equation

e is a mathematical equation for an unknown

function u(x) that relates the values of u(x) and its

derivatives u’(x), u’’(x), ...

du
dx

= CU+ X mmm) U(X)?
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Applications

 Which function’s slope matches the direction of the

flow field (defined by the ODE) at every point?

 Has furthered most parts of physics
— classical mechanics
— statistical mechanics

— dynamical systems

e But also applied fields like financial, biological and

neurosciences




Applications
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Classification

* Ordinary Differential Equations (ODEs)

— Growth processes; Newtons 2nd law of motion

e Partial Differential Equations (PDEs)

— Heat Equation, Wave Equation

e Stochastic Differential Equations (SDEs)

— Black-Scholes Formula




Solutions? @ ‘
®@ ©
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Stability/

Linearity?
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THE HODGKIN-HUXLEY MODEL

32




Hodgkin-Huxley‘s model of a neuron

Input current

L.” I(t) |
------------- action pot.
t L,
u(t) membrane pot. C =— R |3—
y

U k() +ma )

dt

L __ L am+taw

dt RC C




Input current
L»;l I(t)
action pot.

- T
Deriving the model —7<T &

* This is well-described by a very simple differential

equation called the leaky integrator equation

 Because every system obeying this equation can
be seen as a model for this, one can use a more
concrete example to illustrate the derivation and

system behaviour...




,Filling a bath, when the plughole is open®
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Input current
L—ql I(t)
action pot.

J_;t
ot C=— R

Flow in

membrane

“+—— T —»

e u(t) = volume of water at time t

 |(t) = rate of flow in (volume/time)
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Flow out

Input current
L»;l I(t)

“+—— T —»

membrane

Now more physics know-how is needed

flow out L] pressure

flow out = k*u(t)

depth

k constant scalar parameter

k>0: water flowin out (not in)

volume

action

J_;t
ot C=— R

pot.




nnnnnnnnnnnn

L—bil " action
pot.

Evaluate change rate I

% ~ flowin—flow out = | (t) = k [(t)

Now we know:

 Dynamical system (evolves around t)
e Differential equation (relates du to u)
* Linearinu

e First order (highest derivative is du)

e Constant coefficients (1, K)
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Going back to Hodgkin-Huxley ... I
du
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= 1O -k L
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Exact integrator

e Special case: k=0 (i.e. no leakage)
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membrane pot. C =

tttttttttt
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action pot.

Sanity checks - I

e When will the bath be full?

u, +1 __[t=u__ 7

Max
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action pot.

Transient behaviour ... ’

e Special case: setting I{(t) =0

du _ _ i
& = k) m u(t) = Al@xp

General solution

u(t) = Alexp ™ +% | (t)




Fiow' fiald for leaky integrator
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Next week -> simulating with simbrain




