

Analysis of RT distributions with R

Implementing the Ex-Wald distribution

EW Since there is no package containing the Ex-Wald density and distribution, we will code it by hand. Start your Tinn-R editor and follow the subsequent steps to implement the Ex-Wald functions:

- For reasons of convenience define a function Phi(x) to be the CDF of the standard normal distribution (mean = 0, sd = 1).
- 2) Now code a function pwald(w, μ , σ , a) being the CDF of the *Wald process*:

$$F(w \mid \mu, \sigma, a) = \Phi\left(\frac{\mu w - a}{\sigma \sqrt{w}}\right) + \exp\left(\frac{2a\mu}{\sigma^2}\right) \cdot \Phi\left(-\frac{\mu w + a}{\sigma \sqrt{w}}\right)$$

where Φ is the normal distribution (Phi) from above.

3) Since every CDF is the integral over its density function, there is a simple trick to aqcuire the density dwald of the Wald process via its associated CDF pwald:
Define dwald(w, μ, σ, a) to be the shifted difference of pwald(w, μ, σ, a), i.e.
xx <- pwald(w, μ, σ, a) and res <- xx[-1] - x[-n], where n is the length of xx.
Add xx[n-1] as the n-th component of the resulting vector xx, since the difference difference of the resulting vector xx, since the difference difference of the resulting vector xx, since the difference differ

Analysis of RT distributions with R

4) Now you can use the already defined functions to implement the density of the

Ex-Wald process:

$$h(t \mid \mu, \sigma, a, \gamma) = \gamma \exp\left[-\gamma t + \frac{a(\mu - k)}{\sigma^2}\right] \cdot F(t \mid k, \sigma, a)$$
 where

 $k \equiv \sqrt{\mu^2 - 2\gamma \sigma^2}$.and F is the pwald from above.

5) The CDF of the Ex-Wald then reads as

$$H(t \mid \boldsymbol{\mu}, \boldsymbol{\sigma}, \boldsymbol{a}, \boldsymbol{\gamma}) = F(t \mid \boldsymbol{\mu}, \boldsymbol{\sigma}, \boldsymbol{a}) - \frac{1}{\boldsymbol{\gamma}} \cdot h(t \mid \boldsymbol{\mu}, \boldsymbol{\sigma}, \boldsymbol{a}, \boldsymbol{\gamma})$$

where again F is pwald and h is dexwald.

- 6) Check the obtained commands by plotting densties and distributions of values
 - t = (-100, 700) produced by the following parameter sets:

μ	σ	а	Y
0.320	1	108	1/22
0.321	1	97	1/12
0.348	1	98	1/20