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The ex-Wald distribution as a
descriptive model of response times

WOLFGANG SCHWARZ
University of Nigmegen, Nigmegen, The Netherlands

We propose a new quantitativemodel of response times (RTs) that combines some advantages of sub-
stantive, process-oriented models and descriptive, statistically oriented accounts. The ex-Wald model
assumes that RT may be represented as a convolution of an exponential and a Wald-distributed random
variable. The model accounts well for the skew, shape, and hazard function of typical RT distributions.
The model is based on two broad information-processing concepts: (1) a data-driven processing rate de-
scribing the speed of information accumulation, and (2) strategic response criterion setting. These con-
cepts allow for principled expectations about how experimental factors such as stimulus saliency or re-
sponse probability might influence RT on a distributional level. We present a factorial experiment
involving mental digit comparisons to illustrate the application of the model, and to explain how sub-
stantive hypotheses about selective factor effects can be tested via likelihood ratio tests.

Attempts to quantitatively account for response time
(RT) data may roughly be classified into either of two
broad categories: one of substantive, process-oriented
models and one of descriptive, statistically oriented ac-
counts. Process-oriented RT models are based on de-
tailed substantive assumptions concerning the number,
nature, and temporal scheduling of processing stages;
often, they specify the dynamics of information ac-
cumulation over time (see, e.g., Ratcliff, 1978; Ratcliff
& Murdock, 1976; Ratcliff & Rouder, 1998; Schwarz,
1993, 1994; P. L. Smith, 1995). The ability of these mod-
els to fit empirical data sets is an important boundary
condition, but their ultimate success is more typically
seen to rest on their ability to explain complex data pat-
terns from different conditions, or different experiments,
in a conceptually coherent way. A typical example is Rat-
cliff’s (1978) detailed account of set size effects in recog-
nition memory in terms of a race of parallel diffusion
processes, a model that also explains effects of constant
versus varied mapping (Strayer & Kramer, 1994). Quite
generally, such models give detailed accounts not only of
mean RT, but also of its complete distribution, and they
are able to address the relation of mean correct latency
and mean error latency, and of how both covary with re-
sponse accuracy. The price at which those advantages are
boughtis that most process-oriented models are formally
and computationallydemanding, and their implementation
in specific experimental contexts often requires flexible
adjustments and nonstandard elaborations. For example,
in the context of diffusion models of RT, the incorpora-
tion of psychologically important model features such as
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state- or time-dependent drift rates (Heath, 1992; P. L.
Smith, 1995), probabilistic randomizations of response
barriers (Ratcliff & Rouder, 1998), or transitions from re-
flecting to absorbing response barriers (Schwarz & Stein,
1998) requires a firm backgroundin formal diffusion the-
ory and does not easily lead to readily applied standard
tools for data analysis. These factors are very likely a main
reason why, despite their undisputed advantages, detailed
process-oriented models are perhaps more often discussed
than actually applied to data. As an example, Ratcliff’s
(1978) diffusion model of memory search has been ex-
tremely influential in recognition memory research, but
it is also true that only relatively few contributors from
outside Ratcliff’s lab have ever applied this model to
their own data.

In contrast to substantive, process-oriented models,
other accounts simply aim at an accurate description and
an economical summary of empirical RT distributions.
From a formal and computational point of view, these mod-
els are often less demanding, and their applicationto data
sets is a standard routine (cf. Cousineau & Larochelle,
1997; Dawson, 1988; Heathcote, 1996). A prominent ex-
ample of this class of descriptive RT models is the “ex-
Gaussian” model, originally described by Hohle (1965).
It assumes that RT is distributed as is

T=D+M,

where D is a normally distributed random variable and M
is an exponential random variable, independent of D.
The normal component D is sometimes thought to arise
from a large number of serially organized stages; if their
durations roughly conform to the assumptions of the cen-
tral limit theorem (Feller, 1966), then their overall dura-
tion is approximated by a normal random variable. Given
that empirical RT distributions are not symmetrical, the
normal componentis convolved with an independent ex-
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ponential component M, which generates the required
skew. The assumption of an additive exponential RT com-
ponentis supported by independentevidence from (1) ap-
proximations to the tail of the log RT survivor function
or its derivative the hazard function (McGill & Gibbon,
1965; Ueno, 1992), (2) RT deconvolutionapproaches (Bur-
beck & Luce, 1982; Luce, 1986), and (3) statistical proce-
dures specifically designed to test for additive exponen-
tial RT components (Ashby, 1982; Ashby & Townsend,
1980).

Initially attempts were made to interpret D and M as
the durations of two serially organized stages and to
identify them with specific component processes such as
“perception and decision” versus “organization and exe-
cution of the motor response” (Hohle, 1965, p. 384). How-
ever, for over 35 years, it has proved difficult to reach an
agreement as to which of the two components represents
which processing stage. For example, McGill and Gib-
bon (1965) interpreted the exponential component as a
residual motor latency, in direct conflict with the origi-
nal interpretation of Hohle, who took it to represent the
perception and decision latency. As a consequence of these
stage identification problems, part of the more recent re-
search has abandoned substantive interpretations of the
ex-Gaussian model altogether. Thus, the ex-Gaussian
model is often fitted to data without any restrictions on
its parameters, and without specific expectations about
which experimental manipulation might affect which
model parameter(s). This cautious attitude is perhaps best
illustrated by a quote from Heathcote, Popiel, and Mewhort
(1991, pp. 346-347; for a very similar position, see Blanco
& Alvarez, 1994, p. 83): “We treat the ex-Gaussian as a
descriptive first-order account of response latency. Be-
cause we do not propose the ex-Gaussian as a model of
cognitive processes, we do not need a cognitive attribu-
tion for its parameters.” Consistent with this view, the
ex-Gaussian model is sometimes used as a purely de-
scriptive tool for preliminary data reduction (as, e.g., in
Blanco & Alvarez, 1994; Ratcliff, 1978; D. G. Smith &
Mewhort, 1998). Other applications (Balota & Spieler,
1999; Heathcote et al., 1991; Plourde & Besner, 1997)
specifically stress the use of the ex-Gaussian model to
statistically evaluate factor effects beyond the level of
the mean, such as differences in variance or skew across
conditions.

Despite this modest attitude, several problems with
the ex-Gaussian model of RT remain. First, contrary to
the cautious position of Heathcote et al. (1991), in many
recent contributionsthe ex-Gaussian model has been used
not simply as a purely descriptive, data-reductionist tool
to describe RT effects; rather, researchers have clearly
seen a “need [for] a cognitive attribution for its param-
eters,” as one might expect of models used in cognitive
psychology, even when they are meant to be first ap-
proximations. As an example, Rohrer and Wixted (1994)
fit the ex-Gaussian model to free recall latencies; they
interpreted its normal component as an early search-

initiation stage, with the exponential component reflect-
ing an ongoing memory search process. As another exam-
ple, Balota and Spieler (1999) discuss an interpretation
of the ex-Gaussian model in which the component D is
related to stimulus-driven automatic (nonanalytic) pro-
cesses, with the exponential component reflecting more
central, attention demanding (analytic) processes. Many
other substantive interpretations of the ex-Gaussian
model have been described—see, for example, Hockley
and Murdock (1987), Wixted and Rohrer (1993), or
Juhel (1993).

Second, if a major aim of the ex-Gaussian analysis is
simply to compare higher central moments of empirical
RT distributions such as the standard deviation or the
standardized skew across conditions, then statistical
standard methodology with an associated established es-
timation and sampling theory (cf. Stuart & Ord, 1987)
seems preferable to strong ad hoc models whose statisti-
cal properties are not very well understood. It is true that,
as is sometimes argued, the standard error of moment es-
timates increases with the order of the moments, but the
ex-Gaussian distributionis of course no exception to this
general rule.

Third, RT distributions have repeatedly been reported
to exhibit peaked hazard functions under many condi-
tions: they first increase and then decrease toward a
non-zero asymptotic level (Maddox, Ashby, & Gottlob,
1998;P. L. Smith, 1995; Ueno, 1992). It is often assumed
that this behavior is due to a peaked hazard function of
the premotor component of RT because it is also ob-
served when the residual motor time is deconvolved out
of the RT distribution (Burbeck & Luce, 1982; Luce,
1986). However, the hazard function of the ex-Gaussian
distribution is strictly increasing, because its normal
componenthas a strictly increasing hazard function, and
its exponential component, a constant hazard function (cf.
Luce, 1986). Thus, the ex-Gaussian model lacks an im-
portant functional property characteristic of many em-
pirical RT distributions.

Finally, although (as summarized above) there is in-
dependent evidence that empirical RT distributions do
show an additive exponential component, the assump-
tion of a normal component seems less convincing for
several reasons. First, as Luce (1986) pointed out, refer-
ence to the central limit theorem is vague; if just a few
steps of unequal variances are involved, the normal ap-
proximation is likely to be inaccurate. Sometimes the
normal component is also justified by the reproductive
property of the normal distribution (e.g., Rohrer &
Wixted, 1994); it should be noted, though, that this is a
property that the normal distribution shares with any
other stable distribution (cf. Feller, 1966). Furthermore,
conceptually the normal distribution is not completely
adequate for dealing with real time latency data, which
is also suggested by the fact that it extends over the en-
tire real line, whereas durations are necessarily nonneg-
ative. It is sometimes argued that this represents no real



problem because the parameters are usually chosen so that
the probability P(D < 0) is kept small. However, this ar-
gument is potentially misleading, because in typical RT
research one deals not with a single realization, but with
many replications of D. Thus, even if P(D < 0) is small
for any single realization, the probability that negative
values of D arise increases considerably for the many
replications of D obtained in typical RT experiments.

The aim of this paper is to propose a compromise be-
tween substantive, process-oriented models and descrip-
tive, statistically oriented accounts that retains at least
some advantages of both approaches; a related aim is to
describe techniques to apply this new model to example
data, and to evaluate its statistical fit. Our starting point
is the following consideration: Given that we are pre-
pared to accept an essentially descriptive model of RT
that is parsimonious and sufficiently flexible to account
for empirical latency distributions, then why should we
not use componentdistributions that at least roughly cap-
ture substantive concepts of the cognitive mechanisms
that we try to describe?

A basic concept to explain human latency data rests
on the assumption that the decision to initiate and to ex-
ecute a specific overt response does not arise holistically,
in an all-or-none fashion, butis rather preceded by a stage
during which response-related information gradually ac-
cumulates over time. One of the simplest nontrivial for-
mal descriptions of gradual accumulation of information
consists of diffusion models with independent incre-
ments. The idea here is to model the amount of sampled
information as a stochastic process characterized by a
mean information gain per time unit, called the drift rate
of the process. The amount of evidence required before
a response is initiated and executed may then be repre-
sented as an evidence criterion (or response barrier) at
which the process terminates when it reaches that criti-
cal level for the first time. Over the last 40 years, many
variants of this basic conceptualization have been devel-
oped and successfully applied by many authors (Emer-
son, 1970; Laming, 1968; Link, 1992; Ratcliff, 1978; Rat-
cliff & Rouder, 1998; Schwarz, 1990, 1992; P. L. Smith,
1995; Stone, 1960; Strayer & Kramer, 1994). In the fol-
lowing section, we will describe a relatively simple ver-
sion of this general concept that might help researchers
to overcome some of the problems with the ex-Gaussian
model reviewed above.

The Ex-Wald Model

The ex-Wald model is also a member of the serial (ad-
ditive) family T = D + M of RT models, and it also as-
sumes the random variable M to be exponentially dis-
tributed, with rate %, independent of D. The difference
with the ex-Gaussian model is that it assumes that the
decision latency, D, follows a Wald distribution.! Formally,
any Wald-distributedrandom variable may be represented
as the time required in a time- and space-homogeneous
(i.e., Wiener) diffusion process to reach for the first time
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a certain fixed level. It thus is by definition nonnegative,
and its hazard function may be shown to be first in-
creasing and then decreasing (cf. Luce, 1986). In the
present context, we interpret the diffusion process as a
process of accumulating noisy partial information over
time. The speed of this accumulation process is governed
by the drift rate, [, the mean gain of information per time
unit. The fixed level of the process that needs to be
reached before a response is initiated and executed is in-
terpreted as an evidence criterion, a. The exponential
component M is thought to summarize all processes fol-
lowing (and possibly preceding) the decision stage, D
(see Figure 1).

Two factors then determine the distribution of D: the
drift rate, U, of the diffusion process representing the
data-driven component of the task, and the distance, a, of
the evidence criterion from the starting point of the sam-
pling process representing strategic criterion-setting (cf.
Strayer & Kramer, 1994). In the ex-Wald model, the in-
terpretation of these two quantities is conceptually sim-
ilar to the well-known parameters d” and ¢ of signal de-
tection theory (see Macmillan & Creelman, 1991): like
¢ in signal detection theory, the parameter a is consid-
ered to be a response criterion that the subject strategi-
cally adjusts to the current experimental conditions. For
example, in a go/no-go RT experiment, the accumulated
evidence required for a subject to initiate a response will
be expected to increase as the a priori probability of a go
signal decreases. More generally, any partial preinfor-
mation about the stimulus to be presented might be ex-
pected to lead to a corresponding adjustment of the evi-
dence criterion. This is illustrated in Figure 1 for two
criterion levels, a; < a,.

In contrast, the drift rate ., like the parameter d” in sig-
nal detectiontheory, is considered a parameter not under
voluntary control of the subject; rather, it is determined
by the experimental conditions, and it summarizes the
average amount of response-relevant information that
can be extracted during a given time unit. For example,
in a go/no-go RT experiment, the rate with which evi-
dence is accumulated will be expected to depend on the
perceptual or cognitive saliency of the signal presented.
This is illustrated in Figure 1 for two levels i, > (i, of the
drift rate. Thus, increases of U and decreases of a will
both decrease RT, but for quite different reasons, just as
a high hit rate in signal detection theory may be due to
any combination of a high sensitivity and/or a lax re-
sponse criterion. A further parallel with the parameters
¢ and d’ in signal detection theory is that in most exper-
iments without trial-to-trial manipulations of a (e.g., by
cues), the evidence criterion would be expected to be
blockwise constant, whereas the drift rate 4 may vary
within a block according to the stimuli presented.

The most important formal properties of the ex-Wald
model are derived in the Appendix. In addition, Figure 2
summarizes and illustrates the shapes of the Wald and
the exponential component distributions, and that of their
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Figure 1. Two typical sample paths representing stochastic accumulation of information over time. On the average,
less time will be needed to reach the evidence criterion for a larger drift rate (11, > ,), and also for a lax evidence crite-
rion (a, < a,). The ex-Wald model assumes that overall RT is the sum of the first-passage time to the evidence criterion

plus an independent exponential random variable.

associated convolution. It also illustrates how the pa-
rameters of the componentdistributions influence the lo-
cation and shape of their convolution. Clearly, when
compared with detailed process-oriented models, the in-
formation-processing notions of the ex-Wald model seem
quite broad. However, as mentioned above, the ex-Wald
model is proposed here, not to replace those more de-
tailed, but computationally more demanding attempts,
but rather as a compromise to combine at least some ad-
vantages of concept-oriented modeling with the formal
and computational simplicity of, for example, the ex-
Gaussian model.

Application of the Ex-Wald Model to Mental
Digit Comparison

As an illustration, we applied the ex-Wald model to a
go/no-go RT experiment involving mental digit compar-
isons (cf. Dehaene, 1997). Specifically, we looked at the
effect of numerical distance under different levels of the
a priori probability of go trials. It is well known that in
two-choice tasks, mean RT decreases with increasing nu-
merical distance, butitis an open question how this effect
of numerical distance might interact with the a priori go
probability in a go/no-go task. For example, from the
geometry in Figure 1, it would be predicted that the dif-
ference in RT between conditions with different drift
rates should be larger for a stricter evidence criterion (cf.
Strayer & Kramer, 1994). If the a priori go probability
selectively influences the evidence criterion, a, and the
numerical distance selectively influences the drift rate,
U, then the distance effect should be larger for smaller
a priori go probabilities. However, our main aim with this

illustrationis not to present a new original contributionto
mental comparisons but to describe relevant statistical
procedures for the application of the ex-Wald model.

In each trial of a go/no-go digit comparison task, the
participant is presented with a single test digit. A but-
tonpress was required (go trial) if the test digit was nu-
merically larger than the fixed standard of 5; if the test
digit was smaller than 5, participants had to withhold a
response (no-go trial). Two factors were varied orthogo-
nally. The go stimulus could be either the test digit 6 or
9, corresponding to a numerical distance to the standard
of 1 versus 4. This factor was varied randomly within
blocks. Second, in different sessions, subjects were in-
formed that the a priori probability, p,,, of a go trial
couldbe either.50 or .75. The expectation was, first, that
justas with larger/smaller judgments in choice RT tasks,
mean RT would decrease with increases in the numerical
distance to the standard; thus, mean RT was expected to
be shorter for the test digit 9 than for the test digit6. Sec-
ond, we expected mean RT in go trials to be shorter for
the p,, = .75 condition than for the p,, = .50 condition.

Essentially four distributions were then obtained in our
experiment: those for the test digit 6 and the test digit 9
under each of the two levels of p,,. In a first application,
the ex-Wald model was fit without any restrictions on its
parameters to each of these four distributionsto see (1) how
well it would account for the distribution of the observed
latencies, and (2) which of its parameters would best re-
flect the variations of the two experimental factors.

Second, a more specific assumption within the frame-
work of the ex-Wald model would be that variations of
Pgo will selectively influence the evidence criterion, a,
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Figure 2. The top row of panels shows Wald, the middle row shows exponential component densities, and the
bottom row shows their convolutions. The three vertical columns of panels illustrate the effects of selective pa-
rameter variations, starting from a constant baseline (¢ = 100, it = 0.50, 0= 1, Y= 1/50). The leftmost column of
panels illustrates the influence of differences of the drift rate (1 = 0.40 vs. 1 = 0.50) of the Wald density (the two
densities in the top left panel) on the resulting convolutions (the two densities in the bottom left panel). The mid-
dle column of panels illustrates the influence of differences of the evidence criterion (a = 100 vs. a = 125) of the
Wald density (the two densities in the top middle panel) on the resulting convolution (the two densities in the bot-
tom middle panel). The rightmost column of panels illustrates the influence of differences of the exponential rate
parameter (Y= 1/50 vs. Y= 1/100) of the exponential density (the two densities in the middle right panel) on the
resulting convolution (the two densities in the bottom right panel). Note that all three parameter variations yield

a main effect equal to 50 msec.

while variations of the numerical distance (1 vs. 4) of the
go stimulus to the standard will selectively influence the
drift rate, y. Clearly, this model is more specific than
(i.e., is a special case of) the unrestricted model. There-
fore, its fit will necessarily be worse than the fit of the
unrestricted model; the question, however, is whether
this difference is statistically significant. Below, we will
describe how this hypothesis may be addressed via like-
lihood ratio tests.

Method

Participants. Two paid male right-handed students,
18 and 19 years of age, participated in five sessions of
about 1 h.

Stimuli and Apparatus. The digits 2, 3, 6, and 9 were
used as stimuli. The size of the digits was 1.2 X 1.0 cm;
the viewing distance was approximately 60 cm. They
were displayed on a 60-Hz video monitor, the display
timing being synchronized with the video refresh cycle.
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Table 1
Mean RTs and RT Standard Deviations for Each Combination
ofpg'J =.50,.75,and Numerical Distance = 1, 4

Distance
v . S
Peo M SD M SD
.50 360 62 330 53
75 324 58 302 52

Note—Mean RTs for p,, = .50 and p,, = .75 are based on n = 400 and
n =600 individual RTs, respectively.

Response latencies were recorded to the nearest mil-
lisecond, using an external response keyboard connected
to the computer’s parallel port.

Procedure. Each trial started with the presentation of
the fixation point for a random duration of 150-300 msec,
which was then followed by presentation of a single digit
(2,3,6,0r9). The task of the participants was to push the
button of the response keyboard with the right index fin-
ger if the number was numerically larger than 5 (digits 6,
9) but to withhold a response if it was smaller than 5
(digits 2, 3). Thus, for the go digit 6, 9 the factor numer-
ical distance to the fixed standard was equal to 1, 4, re-
spectively. The no-go digits 2, 3 were chosen to prevent
participants from focusing their attention on single dis-
criminative form features like, for example, the vertical
strokes that would have signaled a no-go trial had we
used other digits such as, for example, 1, 4. The display
was terminated either by a response (go trials) or else
after 1,000 msec (no-go trials). The next trial started
1,200 msec later. No feedback was given for correct re-
sponses; false alarms were followed by an acoustic error
message. Participants were instructed to respond as fast
as possible on go trials but to avoid false alarms. Blocks
were separated by breaks which could be terminated by
the subject after a minimum duration of 30 sec. During
the break the number of false alarms and the mean RT of
the preceding block was displayed on the screen, to-
gether with the mean RT of the fastest block so far.

Both subjects participated in five sessions of 22
blocks on 5 consecutive days. A single block consisted of
four warm-up trials, followed by 40 regular trials in a
random order generated by the computer, subject to the
boundary condition that for pg, = .50 within each block,
each digit (2, 3, 6, 9) occurred exactly 10 times, whereas
for p,, = .75, the digits 2, 3 occurred exactly five times
each, and the digits 6, 9 occurred exactly 15 times each.
On day one, considered practice, Participant A did 11
blocks with pg, = .50, followed by 11 blocks with Pgo =
.75.On days 2 and 5 he then did 22 blocks with p,, = .75,
and on Days 3 and 4, 22 blocks with pg, = .50. Partici-
pant B worked under the same schedule but with the val-
ues of p,, interchanged. Both participants were always
informed about the current value of p,,. The last 20
blocks of each of the last four sessions entered into the
final data analysis. Thus, for both participants, 400 and
600 replications were obtained for each go stimulus

(6, 9) under the condition of Pgo = .50 and .75, respec-
tively.

Results

Since our main aim is to illustrate the application of
the ex-Wald model, we focus in the following on the data
of Participant A; all important observations and conclu-
sions were confirmed by the data of Participant B.

Response times. Mean RTs for each combination of
Pgo = .50, .75 and numerical distance = 1, 4 are shown in
Table 1 (see also Figure 3). In a preliminary analysis, the
data were evaluated statistically by a within-subjects
two-factor ANOVA based on the 40 block means ob-
tained under each of the 2 X 2 factor level combinations.
Clearly, these results permit no generalization to hypo-
thetical subject populations.

The variation of the a priori probability of a go trial
yielded a large and significant main effect of 32 msec on
RT [F(1,156) = 162.53, MS_, = 255.90, p < .001]: re-
sponses were significantly faster for p,, = .75 (mean RT,
313 msec) than for Pgo = .50 (mean RT, 345 msec). Sim-
ilarly, numerical distance showed a significant main ef-
fect of 26 msec [F(1,156) = 414.95, MS, = 255.90,p <
.001], with mean RTs of 342 and 316 msec for the dis-
tances of 1 (digit 6) and 4 (digit 9), respectively. Finally,
the distance effect was slightly larger (30 msec) for the p,, =
.50 condition than for the p,, = .75 condition (22 msec),
but this difference was too small for the interaction to be
significant [F(1,156) = 2.20, MS, = 255.90, p = .140].

Error rates. All together, 18 false alarms were ob-
served. For the condition of p,, = .50, four errors oc-
curred for each no-go stimulus (2, 3) in 400 trials, cor-
responding to error rates of 1%. For p,, = .75, in 200
trials, four false alarms were observed for the digit2, and
six for the digit 3, corresponding to error rates of 2% and
3%. No miss (i.e., a failure to respond to a go stimulus)
was observed in any of the four conditions.

Unrestricted Maximum Likelihood Fit
of the Ex-Wald Model

Let <ij> denote the 2 X 2 experimental conditions,
where the index i = 1, 2 refers to the factor levels Pgo =
.50, .75, respectively, and the index j = 1, 2 refers to the
numerical distance of 1, 4, respectively. Maximum like-

Table 2
Unrestricted Ex-Wald Parameter Estimates and
Goodness-of-Fit for Each Factor Level Combination

Peo Distance a o /¥ X df p

.50 1 108 0.320 22 8.86 8 0.354
.50 4 111 0.356 18 11.18 6 0.083
75 1 97 0.321 22 3.92 8 0.864
75 4 98 0.348 20 1591 7 0.026
Total 39.87 29 0.086

Note—Bin width of categories used for y2 test was 25 msec. When nec-
essary, categories were combined so that each expected frequency ex-
ceeded 5. Degrees of freedom result as the number of categories minus
one minus the number parameters (three) estimated, df = n_,, — 4.
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Figure 3. Histograms of RT from the 2 X 2 experimental conditions. The top row shows data for p,, = .50, the bottom
row for p,, = .75; the left panels refer to a numerical distance of 1, the right panels to a numerical distance of 4. Bin width
is equal to 25 msec; the number of data per histogram is 400 in the top row, and 600 in the bottom row. Abscissa: time
in milliseconds. Ordinate: frequency count per bin. Theoretical ex-Wald (solid lines) and ex-Gaussian (dots) densities
with unrestricted maximum likelihood parameters (see Table 2) are scaled so that they cover the same areas as the

histograms.

lihood estimates of the three parameters of the ex-Wald
model (scaled by 0= 1) were found by maximizing the
log likelihood of the data:

ny
InL="Y Inh(ty |1y, 0, = Lay.v;)
k=1

separately for each condition <ij> as a function of the para-
meters <(l;;, a;;, ¥;>. Here, In stands for the natural log-
arithm, the function # is the ex-Wald density derived in
the Appendix (Equation A5), the 7, are the individual RTs
observed under condition <ij>, and the number of data
points, ny, was equal to 400 and 600 forpgo =.50and .75,
respectively. The resulting maximum likelihood param-

eter estimates are given in Table 2, and the associated fit
is shown graphically in Figure 3 (solid lines). The fol-
lowing observations may be made.

First, all four distributions shown in Figure 3 exhibit
the positive skew typical of RTs and are well described
by the ex-Wald model. To statistically evaluate these fits,
RTs were first sorted into bins of width 25 msec, and ob-
served and expected frequencies were compared via the
2 statistic; in this calculation, bins were collapsed as was
necessary until expected frequencies were at least equal
to five (cf. Hoel, 1971). Degrees of freedom (df ) for each
condition are given as the number of categories minus
one minus the number (i.e., three) of parameters esti-
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mated for each distribution. Results are given in Table 2;
they confirm that the RT distributions from three condi-
tions are in excellent agreement with the ex-Wald model,
only for the fastest condition (Pgo = .75, numerical dis-
tance = 4) is some discrepancy visible, although it does
not reach significance at a level of ov=.01. Overall, com-
bining the values of }2 and the dfs across conditions, the
fit of the ex-Wald model is very satisfactory. As a com-
parison, the ex-Gaussian model was fitted to the same data;
for the unrestricted maximum likelihood estimates of the
ex-Gaussian parameters, a reasonable overall fit was ob-
tained, although the value of y2=57.55 for df=30is sig-
nificant (p =.002). These fits of the ex-Gaussian model
are indicated by the dots in Figure 3.

Second, the unrestricted maximum likelihood param-
eters of the ex-Wald model obtained support the sub-
stantive hypotheses put forth above: estimates of the ev-
idence criterion mainly reflect variations of Pgos whereas
estimates of the drift rate mainly reflect variations of the
numerical distance. This is consistent with the interpre-
tation, suggested by previous related work (cf. Schwarz
& Stein, 1998; Smith & Mewhort, 1998), that partial nu-
merical information about the digit presented is gradu-
ally accumulated at a rate that increases with the numer-
ical distance of that digit to the standard. Also, the
amount of evidence required before a go response is ini-
tiated increases with decreases of the a priori probabil-
ity that a go response will be required on any given trial.

An important substantive question, then, is how well
the ex-Wald model can account for the present data
under the additional restrictions that (1) variations of Pyo
are exclusively reflected in changes of the evidence cri-
terion a, that (2) variations of the numerical distance are
exclusively reflected in changes of the drift rate 1, and
that (3) neither variation has an effect on the exponential
rate parameter, ¥. This question will be addressed in the
next section.

Evaluating Psychological Hypotheses:
Likelihood Ratio Tests

Formally, in the unrestricted model fit, the ex-Wald
distribution was fitted to the data by maximizing the
likelihood using the most general parameter structure
<M Az, Y>3 that is, in each condition <ij> each param-
eter was determined without any restrictions. Within the
ex-Wald model, the parameter restrictions outlined above
represent an assumption of selective factor influence on
the model parameters. More specifically, if p,, and nu-
merical distance selectively influence only the evidence
criterion a and the drift rate [, respectively, then the re-
stricted parametric model structure becomes <uj, a;, v>.
The indices in this structure indicate that i depends on
the numerical distance only, that a depends on p,, only,
and that ydoes not depend on either factor.

It is intuitively clear that relative to the unrestricted
(or less restricted) model fit, the maximum of the likeli-
hood satisfying additional boundary conditions posed on
the parameters is necessarily smaller than or equal to the

maximum of the likelihood without (or with fewer) such
restrictions, even if the restricted model actually holds.
On the other hand, the unrestricted hypothesis would be
supported when the maximum likelihood under the re-
stricted model is much smaller than for the unrestricted
model. The essential problem, then, is to decide between
these two cases, and it may be solved via likelihood ratio
tests. Denote as L, L, the maximized likelihood under
the restricted and unrestricted model, respectively. If the
restricted model actually holds, then the likelihood ratio
statistic

A=-2- lnﬁ

L
has an approximate )2 distribution with its degrees of
freedom equal to the number of parameters that are de-
termined by the restricted model (for a detailed exposi-
tion of likelihood ratio tests, see Hoel, 1971). To illus-
trate, the unrestricted ex-Wald model fitted above has
altogether 12 free parameters—namely, the triple <f;;,
a;j, ¥,;> for each of the four conditions <ij>. The re-
stricted model, on the other hand, has only five free pa-
rameters—namely, <ll, l,, a,, a,, Y>. Thus, the param-
eter restrictions determine 12 — 5 = 7 parameters, and if
the restricted model holds, then the likelihood ratio sta-
tistic A will follow an approximate y2 distribution with
df=1.

To apply these results to the present experiment, we
maximized the likelihood of the data under the restric-
tions of selective factor influence on the model param-
eters, as explained above. Specifically, this involved
maximizing the likelihood of the data as a function of
the five parameters <tl,, U,, a;, a,, Y>. The resulting re-
stricted maximum likelihood estimates of i ; were 0.326,
0.355 for numerical distance = 1, 4, respectively. Maxi-
mum likelihood estimates of a; were 110, 98 for p,, =
.50, .75, respectively. Finally, the maximum likelihood
estimate of %, when restricted to be identical across all
conditions, was 1/22.

Next, the restricted (L) and unrestricted (L;) maxi-
mum likelihoods were compared via the likelihood ratio
statistic, A. For the present data, A = 2.04 for df = 7. This
value of A is fairly small in comparison with a ¥2 distri-
bution with df = 7 (p = .958), indicating that the re-
stricted maximum likelihood L, is not significantly
smaller than L. This conclusion is also supported when
we compare expected and observed frequencies in the
same way as for the unrestricted model fit. A slightly in-
creased y2 value of 41.47 was found; however, because
fewer parameters are now estimated from the data, this
increase is compensated by a simultaneous increase of
the degrees of freedom to df = 35. Thus, according to the
2 criterion, the restricted five-parameter model also fits
the data quite well.

In conclusion, then, the present data are perfectly
compatible with the assumptions (1) that p,,, selectively
influences the evidence criterion set by the subject (but
not the drift rate), (2) that numerical distance selectively



influences the drift rate with which information is accu-
mulated (but not the evidence criterion), and (3) that ¥is
not influenced by either of these two factors.

Discussion

The present article presents a simple quantitative ac-
count of RT distributions, the ex-Wald model. The
model is based on a distinction between data-driven ac-
cumulation processes and strategic processes assumed to
be under voluntary control of the subject. In our appli-
cation to numerical judgments, the data support the in-
terpretation that response probability selectively influ-
enced the evidence criterion while numerical distance
affected the rate with which information was accumu-
lated to pass that criterion.

We are well aware that the ex-Gaussian model, in par-
ticular, also provides flexible descriptions of RT distribu-
tions which usually lead to satisfactory statistical fits,
even though for the present data the fit of the ex-Gaussian
model happens to be slightly poorer than that of the
ex-Wald model. However, although the ex-Wald model is
of similar descriptive flexibility and has comparable com-
putational demands, we would like to emphasize that it
embodies at leastin a broad sense importantinformation-
processing concepts such as gradual information accu-
mulation, and strategic criterion setting. These concepts
have already often proved very useful in the context of
more elaborate random walk and diffusion models of RT.
In contrast, for the ex-Gaussian model, there is usually
no clear theoretical expectation regarding which factors
should influence which model parameters.

Although in the present application the assumption of
selective factor influence on the parameters is well sup-
ported, it is quite likely that in other applications a fac-
tor may influence not just a single parameter but, say,
both i and a. If we again draw the conceptual parallel to
signal detection theory, such a finding would be analo-
gous to a factor that influences not just d’ but also the re-
sponse criterion c—a finding that may complicate our
understanding and interpretation of this factor but that
in itself is not evidence against the basic signal detection
model. Analogously, nonselective factor influence on its
parameters is not evidence against the ex-Wald model;
rather, it would indicate that the influence of this factor
is more complex than in the simpler present case. In fact,
in the case of nonselective influence, significant likeli-
hood ratio tests based on the ex-Wald model would pro-
vide an important diagnostic indicating that a simple se-
lective influence interpretation was not supported.

Two important aspects of the ex-Wald model proposed
here should be stressed specifically. First, as explained
above, the Wald distribution is skewed, it extends over
nonnegative values only, it has a peaked hazard function,
and it is, owing to its relation to diffusion processes, con-
ceptually very attractive. It should be noted, though, that
the Wald distribution itself has repeatedly been shown to
yield quite poor fits to empirical RT distributions
(Burbeck & Luce, 1982; Luce, 1986). This is probably
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not too surprising, given the independent evidence, sum-
marized above, for an additive exponential RT component.
Thus, our basic result (Equation A5) for the exponential-
plus-Wald convolution density is an important and nec-
essary improvement of earlier, less successful accounts
involving the Wald distribution. Second, it is precisely
the relevant results for the ex-Wald density derived in the
Appendix that make possible the application of statisti-
cal standard techniques such as maximum likelihood pa-
rameter estimation, and likelihood ratio tests. As dis-
cussed above, the lack of standard techniques is likely to
be a major obstacle to the application of more detailed
process-oriented RT models, which have, despite their
conceptual attractiveness, been used far less often than
readily applied descriptive RT models such as the ex-
Gaussian.

Another important aspect of the ex-Wald model is
closely related to a research strategy prominent in many
areas of cognitive psychology: the idea that we may bet-
ter understand the nature of hypothesized perceptual or
cognitive processes by learning about the nature of ex-
perimental factors that influence and modify them (cf.
Sternberg, 1998). In the context of this research strategy,
psychological hypotheses typically imply that a specific
experimental factor selectively influences a specific
model mechanism, represented by a specific model pa-
rameter; a related assumption s that two specific factors
might influence different model mechanisms. The ex-
Wald model admits the statistical evaluation of such hy-
potheses for the broad concepts of strategic criterion set-
ting, and the efficiency with which response-related
information can be accumulated. An example of this,
considered above, is provided by the hypotheses that in
mental digit comparison the factor of numerical distance
selectively influences the drift rate, and that the a priori
go probability selectively influences the evidence crite-
rion. Within the ex-Wald model, the general statistical
approach to test these hypotheses using RTs from facto-
rial experiments is based on likelihood ratio tests. Note,
however, that the likelihood ratio approach presupposes
that the model parameters represent, at least in a broad
sense, certain information-processing concepts, so that
meaningful hypotheses of selective factor influences can
be derived from substantive considerations. Formally,
one could of course likewise use likelihood ratio tests for
the ex-Gaussian model, for example. However, precisely
because there is no clear cognitive interpretation of its
parameters, there would seem to be little point to such an
approach; perhaps this is one of the reasons why likeli-
hood ratio tests have in fact played no role in the context
of the ex-Gaussian model.

The decompositioninto effects on the drift rate versus
effects on the evidence criterion may be contrasted with
factorial additivity on the level of mean RT (cf. Stern-
berg, 1998). From the results given in the Appendix (or
graphically from Figure 1), it is clear that the effects of
factors selectively influencing the drift rate versus the ev-
idence criterion will not combine additively but interact
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(cf. Strayer & Kramer, 1994). For example, in the present
experiment, the numerical distance effect is predicted to
be larger for the conditionp,, = .50 than for p,, = .75. De-
scriptively, the distance effect observed was in fact
slightly (8 msec) larger for the low-probability condi-
tion, but the difference was too small to be significant.
This pattern illustrates and explains a more general find-
ing: For typical effect sizes (e.g., a numerical distance
effect of 26 msec), the difference in drift rates, although
real, is likely to be small, so that the interaction contrast
predicted by the model is also fairly small, relative to
typical standard errors of the cell means. In this situa-
tion, a conventional ANOVA test of factor interaction is
likely to have low power. This implies that the absence of
asignificantinteractionis not very strong evidence against
the type of model illustrated in Figure 1. In fact, maxi-
mum likelihood model fits and likelihood ratio tests of
the type illustrated above provide a more precise test of
the hypothesis of selective influence on the parameters y
and a.

Relative to more detailed substantive models, an im-
portant limitation of the ex-Wald model is its lack of a
mechanism to explain why and when errors occur in choice
RT experiments. Just like the ex-Gaussian model, it can-
not predict error rates, error latencies, or the relation be-
tween response speed and accuracy in choice RT exper-
iments. This limitation is perhaps slightly obscured in
the present application to a go/no-go paradigm not in-
volving a choice between two different responses. In fact,
in a go/no-go situation, false alarms may be explained
by the assumption that no-go stimuli have a zero (or near-
zero) drift rate, so that occasionally the evidence criterion
would be reached during the period (1,000 msec in the
present experiment) in which responses to the no-go stim-
ulus would be registered. This explanation predicts that
more false alarms should be observed with the lower ev-
idence criterion in the conditionp,, = .75. Descriptively,
the error rates reported above conform to this prediction,
althougherrors were too infrequent to confirm this result
statistically.

In conclusion, the ex-Wald model provides a flexible
description of RT distributions that avoids many of the
problems associated with other descriptive models of RT.
It also offers a broad cognitive interpretation of its pa-
rameters, and this interpretation may be tested using
standard statistical tools, such as maximum likelihood
estimation of its parameters and likelihood ratio tests of
selective influence. The model is certainly not intended
to replace more elaborate process-oriented models (with
their associated more elaborate demands), butitis an ad-
vantageous choice when a researcher wants to analyze
RT distributions by using a simple descriptive model.
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NOTE
1. Also called the Inverse Gaussian distribution; for a review of the

different terminologies and notations, see Johnson, Kotz, and Bala-
krishnan (1994, chap. 15).

APPENDIX

In the following, we derive and summarize important formal results for the ex-Wald model. Formally, we
thus consider the random variable T defined by

T=D+M, (A1)

where D is the first-passage time through a level a > 0 in a Wiener diffusion process starting at x = 0, with
drift 4 > 0 and variance parameter 62 > 0; M is an exponential random variable, independent of D, with rate
Y> 0. To make transparent the relation to diffusion models, we retain the general parametric notation <i, o,
a> for the random variable D, although one of these parameters can be fixed without loss of generality. A con-
venient normalization, used in the present article, is 0= 1. For more information about properties of the ran-
dom variable D, we refer to the detailed monographs of Chhikara and Folks (1989) or Seshadri (1993), and to
Cox and Miller (1965) or Johnson, Kotz, and Balakrishnan (1994).

I. Notation and Preliminaries
The density, f, of the random variable D is

_ 2
(w1 1.0,0) = exp| LA | (A2)
g'\/ 27'L'W3 20°w
and its cumulative distribution function (CDF), F, is
2al uw+a
F(w|uo0.a (“W a]+exp( J q{——), (A3)
trinoa=o o) e
where @( ) is the cumulative standard normal distribution function.
Finally, the density, g, of the exponential random variable M is
g(w]y)=vexp(-yw). (A4)

I1. The Density and Cumulative Distribution Function of T
We first derive the density, &, of the random variable T as defined above. We consider the case that u2? >
2y02. As we argue below, the remaining case is of little practical interest to the present applications. Thus, let

k=+/u?-2y5% 0.
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APPENDIX (Continued)

The convolutionintegral for the density / is

h(t|,u,c7,a,]/) = f(w|,u,c7,a)-g(t—w|]/)dw

-~ O t—~

_ a ) _(“_,UW)Z . v —
_OGsz3 exp|: = }yexp[ Y w)]dw

t
~ yexply) [—A—
0 G\/ 2nw
We next convert the integrand into an expression having the form of the density f, so that we can express the
lastintegral in terms of the CDF F. To this end, we complete the square in the numerator of the fraction within
exp( ), and we factor out of the integral terms independent of the integration variable, w. The result is

_ 2_ 2 2
4 -exp| _lazjw) 5 2yow dw.
20°w

Wt |p.0.a.7) = )/exp[—)/t+a(’l;—;k)]F(t|k,G,a), (A5)

where k, F are defined above. All computations required for maximum likelihood parameter estimation and
likelihood ratio tests are based on Equation AS.

Using a theorem of Ashby and Townsend (1980) about convolutions involving exponential random vari-
ables, the CDF, H, of the random variable T is

H(t|,u,cr,a,y) =F(t|,u,cr,a)—i-h(t|,u,cr,a,y)

:F(t|u,6,a)—exp|:—]/t+a('l;—;k):|.F(t|k,c7,a). (A6)

Equations A5 and A6 hold for 42 > 2y02, or, in terms of the expectation, 1/9, of M:

2
E[M]:lzz(i) .
Y u

The lower limit on the right-hand side is equal to 2Var[D]/E[D], a value that for most reasonable choices of
parameters cannot exceed very few milliseconds. To illustrate, if D has a mean of 250 msec and a standard
deviation of 25 msec, then the lower limit for E[M] would be equal to 5 msec. Clearly, this is much smaller
than realistic estimates of E[M] would be in most applications. The case of U2 < 202 requires a more elabo-

rate mathematical treatment and will therefore be covered in a separate publication.

II1. Moments of T
The expectation of the random variable T is:

Er|=4+L1; (A7)
ny
its variance is
2
t, = VarT|= —“E +ﬁ; (AS)
and the third central moment is
3 4
1y = E[(T—E[T]) }: 3404 2 (A9)
H Y

From the last two results, the usual dimensionless measure of skew, L5/(1,)32 (cf. Stuart & Ord, 1987), is eas-
ily computed. Clearly, for the ex-Wald model, the skew is generally positive, which follows from the fact that
the skew of both D and M is positive.

These results could in principle be used to provide suitable starting values for any maximum likelihood pa-
rameter search algorithm by equating the first three theoretical and empirical moments. However, the result-
ing system of equations tends to be complex, because it is nonlinear in the parameters. A simpler procedure
starts from the observation that 1/yis necessarily bounded from above by (and usually considerably smaller
than) the RT standarddeviation. For a given trial value of 1/%, the remaining parameter starting values are then
easily determined to match the first two moments.
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APPENDIX (Continued)

IV. Computational and Numerical Aspects

As is indicated by Equations A5 and A6, computations involving the density, /2, and the CDF, H, of T can
all be reduced to computations involving the function F, as given by Equation A3, which in turn essentially re-
quires the cumulative normal distribution function, ®. Thus, the computationaldemand is comparable to com-
puting the density of the ex-Gaussian model, which also involves ®.

The first summand in Equation A3 presents no numerical problems; however, the second summand is a
productthe first factor of which can be become quite large, whereas the second factor can become quite small.
For example, for the parameters of the order found for the experimental data in this paper, products such as
exp(78) - ®(—14.5) are typical. Many current personal computers are accurate to 15 decimal places, which
implies that numbers like ®(—14.5) are represented as zero (and so are, thus, products involving these num-
bers); in fact, with 15 significant places, ®(z) is represented as zero for z < —7.93. It is therefore essential to
use numerical implementations of the function F' that take these aspects into account.

The problem can be handled by a convenient approximation to @ due to Derenzo (1977), who shows that
forz>5.50

1-®(z) =D(-2)

- 2

2
-exp(—z——m)+ &(2)
2z

1
7-N21

where the relative error of the term £(z) is bounded by

€ _
LEDL <y o107,

1-D(z2)
The important advantage of Derenzo’s approximation in the present context is that it combines the two fac-
tors to be multiplied in such a way that it keeps the overall argument of the resulting exponential function
within moderate ranges. Specifically, applying Derenzo’s approximation to the second summand in Equation
A3, we obtain

—a)? 2
exp(za—’u) : (D(— pw st a) = oy “exp| — (v —a) -0.94.—9W
o2 ovw ) (uw+an2r 262w (Lw + a)?
for

awta s 5. (A10)
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