

Introduction to Multilevel Analysis

Prof. Dr. Ulrike Cress Knowledge Media Research Center Tübingen

- What's the problem about multilevel data?
- Options to handle multilevel data in CSCL

Caution: After this presentation you will not be able to do or fully understand a HLM model – but you will be aware of all the mistakes you can do!

give you some take-home messages

"Extraverted children perform better in school"

What may be the reason for that? What may be the processes behind?

What does this mean statistically?

What is the problem about multi-level data?

Example: Effect of Extraversion on Learning Outcome

IV: Extraversion

DV: performance

Pooled (n=10)

r = .26

r = -0.08

Aggregated (Mean of the groups; n=3) r = .99

12,00 bost _{10,00} 8.00 2,00 4,00 6,00 8,00 14.0 pre 12,00 post 8,00 4,00 2,00 6,00 8,00 pre 14.00 12,00 bost 10,0 8,00-2.00 4,00 6,00

14,00

Individual observations are not independent

- What does it statistically mean, if the variance within the groups is small?
- with regard to standard-deviation?
- with regard to F?
- with regard to alpha?

Analysis of Variance: heavily leans on the assumption of independence of observations

$$F = \frac{Var_{between}}{Var_{within}}$$

- Underestimation of the standard error
- Large number of spuriously "significant" results
- Inflation of Alpha

			INTRACLASS CORRELATION							
no. of groups	group size	.00	.01	.10	.30	.50	.70	.90	.95	.99
2	3	.05	.05	.07	.14	.24	.38	.63	.73	.88
	10	.05	.06	.17	.37	.53	.68	.83	.88	.95
	30	.05	.08	.34	.59	.72	.81	.90	.93	.97
	100	.05	.17	.57	.77	.84	.90	.95	.96	.98
3	3	.05	.05	.08	.19	.34	.56	.84	.92	
	10	.05	.06	.22	.54	.74	.87	.96	.98	.98
	30	.05	.10	.49	.80	.90	.96	.99	.99	1.00
	100	.05	.22	.78	.93	.97	.99	1.00	1.00	1.00
5	3	.05	.05	.10	.27	.51	.78	.97	.99	1.00
	10	.05	.07	.32	.74	.92	.98	1.00	1.00	1.00
	30	.05	.12	.69	.95	.99	1.00	1.00	1.00	1.00
	100	.05	.31	.94	.99	1.00	1.00	1.00	1.00	1.00
10	3	.05	.06	.13	.44	.78	.97	1.00	1.00	1.00
	10	.05	.08	.49	.94	1.00	1.00	1.00	1.00	1.00
	30	.05	.16	.91	1.00	1.00	1.00	1.00	1.00	1.00
	100	.05	.49	1.00	1.00	1.00	1.00	1.00	1.00	1.00

(Stevens, 1996, 240)

you are not allowed to use standard statistics with multi-level data

.... is *caused* by

 Composition: people of the groups are already similar *before* the study even begins is a problem if you can not randomize

.... is *caused* by

 Common fate caused through shared experiences during the experiment is always a problem in CL

- is *caused* by
- 3. Interaction & reciprocal influence

Intra-class correlation

2nd take-home message: Relevance for Learning Sciences

- CL explicitly bases on the idea of creating nonindependency
- We want people to interact, to learn from each others, etc.
- CL should even aim at considering effects of nonindependency
- if you work on CL-data, you have to consider the multi-level structure of the data not just as noice but as an intended effect

Possible solutions

- 1. Working with fakes
- 2. Groups as unit of analysis
- 3. Slopes as outcomes
- 4. Hierarchical linear analysis (HLM)
- 5. Fragmentary (but useful) solutions

classical experiment: conformity study Asch (1950)

Pros:

- well established method in social psychology
- high standardization
- situation makes people behaving like being in a group, but it leads to statistically independent data
- causality

• sometimes easy to do in CSCL \rightarrow anonymity

Cons:

- artificial situation
- no flexibility
- only simple action-reaction pairs can be faked. No real process of reciprocal interaction

non dynamics

• Group level: Aggregated data

Pros:

statistically independent measures

Cons:

- need of many groups
- waste of data
- results not valid for individual level \rightarrow Robinson Effect

- illiteracy level in nine geographic regions (1930)
- percentage of blacks (1930)

regions	r = 0.95
individuals	r = 0.20

→ Ecological Fallacy: inferences about the nature of specific individuals are based solely upon aggregate statistics collected for the group to which those individuals belong.

Problem: Unit of analysis

You can use group-level data

- but the results just describe the groups, not the individuals

Individual level: centering around the group mean
 / standardization → elimination of group effects

Pros:

- easy to do
- makes use of all data of the individual level

Cons:

- works only, if variances are homogeneouos (centering)
- loss of information about heterogeneous variances (standardization)
- differences between groups are just seen as error-variance

Burstein, 1982

Solution 3: Slopes as Outcomes

Pros:

- uses all information
- focus is on interaction effects between grouplevel (team) and individual-level variable

Cons:

- descriptive
- just comparing the groups which are given → no random-effects are considered

Consider the slopes of the different groups. They show group effects!

e.g. it is a feature of the group, if extraverted members are more effective

→ slopes describe groups
→ slopes are DVs

Solution 4: Hierarchical Linear Model Bryk & Raudenbush, 1992

Two Main ideas

the groups (you have data from) represent a *randomly choosen sample* of a population of groups! (random effect model)

The slopes and intercepts are systematically varying variables.

Solution 4: Hierarchical Linear Model Bryk & Raudenbush, 1992

variation of slopes variation of intercepts

predicted with 2nd level variables

Solution 4: Hierarchical Linear Model Bryk & Raudenbush, 1992

Equation system of systematically varying regressions

Level 1: $Y_{ij} = \beta_{0j} + \beta_{1j}X_{ij} + r_{ij}$

$$\begin{split} \beta_{0j} &= \text{intercept for group j} \\ \beta_{1j} &= \text{regression slope group j} \\ r_{ij} &= \text{residual error} \end{split}$$

W = explanatory variable on level 2 e.g. teacher experience

Level 1:
$$Y_{ij} = \beta_{0j} + \beta_{1j} X_{ij} + r_{ij}$$
 (1)

Level 2:
$$\beta_{0j} = \gamma_{00} + \gamma_{01} W_j + u_{0j}$$
 (2)
 $\beta_{1j} = \gamma_{10} + \gamma_{11} W_j + u_{1j}$ (3)

Fixed part

Put (2) and (3) in (1)

$$Y_{ij} = (\gamma_{00} + \gamma_{01}W_{j} + u_{0j}) + (\gamma_{10}X_{ij} + \gamma_{11}W_{j}X_{ij} + u_{1j}X_{ij}) + r_{ij} \quad (4)$$

$$Y_{ij} = (\gamma_{00} + \gamma_{01}W_{j} + \gamma_{10}X_{ij} + \gamma_{11}W_{j}X_{ij}) + (u_{1j}X_{ij} + u_{0j} + r_{ij}) \quad (5)$$

Random (error) part

Iterative testing of different models

Baseline model: null model, intercept-only model

 $\mathbf{Y}_{ij} = (\gamma_{00} + \gamma_{01}\mathbf{W}_j + \gamma_{10}\mathbf{X}_{ij} + \gamma_{11}\mathbf{W}_j\mathbf{X}_{ij}) + (\mathbf{u}_{1j}\mathbf{X}_{ij} + \mathbf{u}_{0j} + \mathbf{r}_{ij})$

Baseline model: null model or intercept-only model

 $\mathbf{Y}_{ij} = \gamma_{00} + \mathbf{u}_{0j} + \mathbf{r}_{1ij}$

Baseline model: null model, intercept-only model

$$\mathbf{Y}_{ij} = (\gamma_{00} + \gamma_{01}\mathbf{W}_{j} + \gamma_{10}\mathbf{X}_{ij} + \gamma_{11}\mathbf{W}_{j}\mathbf{X}_{ij}) + (\mathbf{u}_{1j}\mathbf{X}_{ij} + \mathbf{u}_{0j} + \mathbf{r}_{ij})$$

which amount of variance is explained through the groups? $Var(u_0)$

 \rightarrow Intraclasscorrelation ICC =

Var (
$$u_o$$
)+ Var (r_{ii})

2nd model: Random intercept model with first level predictor

We predict the individual measures with a first-level predictor

$$Y_{ij} = (\gamma_{00} + \gamma_{01}W_{j} + \gamma_{10}X_{ij} + \gamma_{11}W_{j}X_{ij}) + (u_{1j}X_{ij} + u_{0j} + r_{ij})$$
$$Y_{ij} = (\gamma_{00} + \gamma_{10}X_{ij} + u_{0j} + r_{ij})$$

first level predictor

2nd model: Random intercept model with first level predictor

40

Oracle States of Second-level predictor Second-level predictor

We predict the the intercepts with a second-level predictor

$$Y_{ij} = (\gamma_{00} + \gamma_{01}W_j + \gamma_{10}X_{ij} + \gamma_{11}W_jX_{ij}) + (u_{1j}X_{ij} + u_{0j} + r_{ij})$$

$$Y_{ij} = (\gamma_{00} + \gamma_{01}W_j + \gamma_{10}X_{ij} + u_{0j} + r_{ij})$$
2nd level predictor

Oracle States of Second-level predictor Second-level predictor

$$Y_{ij} = (\gamma_{00} + \gamma_{01}W_j + \gamma_{10}X_{ij} + \gamma_{11}W_jX_{ij}) + (u_{1j}X_{ij} + u_{0j} + r_{ij})$$

$$Y_{ij} = (\gamma_{00} + \gamma_{01}W_j + \gamma_{10}X_{ij} + u_{1j}X_{ij} + u_{0j} + r_{ij})$$
Heteroscedasticity

- randomly varying intercepts;
- intercepts predicted by W
- slope
- randomly varying slopes
- Variation of the slopes is not predicted

$$\mathbf{Y}_{ij} = \gamma_{00} + \gamma_{01} \mathbf{W}_j + \gamma_{10} \mathbf{X}_{jj} + \mathbf{u}_{1j} \mathbf{X}_{jj} + \mathbf{u}_{0j} + \mathbf{r}_{ij}$$

5. Context model: cross-level interaction

$$\mathbf{Y}_{ij} = (\gamma_{00} + \gamma_{01}\mathbf{W}_{j} + \gamma_{10}\mathbf{X}_{ij} + \gamma_{11}\mathbf{W}_{j}\mathbf{X}_{ij}) + (\mathbf{u}_{1j}\mathbf{X}_{ij} + \mathbf{u}_{0j} + \mathbf{r}_{ij})$$

5. Context model: cross-level interaction

- randomly varying intercepts;
- intercepts predicted by W
- slops predicted by W
- randomly varying slopes
- Variation of the slopes predicted by W

Pros

- deals with ML data
- allows to test group-level influences
- allows to test cross-level interactions
- method would optimally fit to many questions of CL

Cons

- sometimes difficult to specify
- needs many data
 - \rightarrow bottleneck for CL

Do not test the whole model, but do it iteratively

- (1) test, if the groups significantly differ
- (2) explain the difference of the intercepts with group-level predictors
- (3) test if the slope significanly differ
- (4) explain the difference of the slopes with group-level predictors
- (5) test if there is a cross-level interaction

see Hox, J. (2002), p. 175

- 30/30 rule (Kreft, 1996): ok for interest in fixed parameters
- accurate group level variance estimates: 6-12 groups (Brown & Draper, 2000)
- 10 groups: variance estimates are much too small (Maas & Hox, 2001)
- if interest is in cross-level interactions: 50/20
- if interest is in the random part: 100/20

Multilevel Articles in CSCL

- Strijbos, Martens, Jochems, & Broers, Small Group Research 2004
 - \rightarrow 33 students (10 groups); usefulness of roles on group efficiency
- Schellens, Van Keer & Martin Valcke, Small Group Research, 2005
 →286 students (23 groups); measurement occasions within students; roles in groups
- **Piontkowski, Keil & Hartmann**, Analyseebenen und Dateninterdependenz in der Kleingruppenforschung am Beispiel netzbasierter Wissensintegration; *Zeitschrift für Sozialpsychologie, 2006*
 - → 120 students (40 groups); sequenzing tool; amount of discussion in a group

- be aware of group effects
- think about working with fakes
- think about groups as unit of analysis
- look for the variances! → heterogeneous variances can be a sign for group effects
- look for different slopes!
- try to explain slopes
- look for the ICC

Questions?