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Different psychiatric disorders as well as exposure to adverse life events have individually been associated with multiple age-related
diseases and mortality. Age acceleration in different epigenetic clocks can serve as biomarker for such risk and could help to
disentangle the interplay of psychiatric comorbidity and early adversity on age-related diseases and mortality. We evaluated five
epigenetic clocks (Horvath, Hannum, PhenoAge, GrimAge and DunedinPoAm) in a transdiagnostic psychiatric sample using
epigenome-wide DNA methylation data from peripheral blood of 429 subjects from two studies at the Max Planck Institute of
Psychiatry. Burden of psychiatric disease, represented by a weighted score, was significantly associated with biological age
acceleration as measured by GrimAge and DunedinPoAm (R2-adj. 0.22 and 0.33 for GrimAge and DunedinPoAm, respectively), but
not the other investigated clocks. The relation of burden of psychiatric disease appeared independent of differences in
socioeconomic status and medication. Our findings indicate that increased burden of psychiatric disease may associate with
accelerated biological aging. This highlights the importance of medical management of patients with multiple psychiatric
comorbidities and the potential usefulness of specific epigenetic clocks for early detection of risk and targeted intervention to
reduce mortality in psychiatric patients.

Neuropsychopharmacology; https://doi.org/10.1038/s41386-023-01579-3

INTRODUCTION
Psychiatric disorders as well as their risk factors, such as exposures
to adverse life events, including childhood adversity or chronic
psychosocial stress, have been associated with increased pre-
valence of age-related diseases and mortality in large meta-
analyses [1–4]. Patients with psychiatric disorders have a
significantly reduced life expectancy [5]. Understanding of the
mechanisms contributing to this risk and availability of biomarkers
would contribute to early identification of patients at risk,
improved medical management and reduction of overall mortal-
ity. Epigenetic information, namely DNA methylation (DNAm), was
used to develop so-called ‘epigenetic clocks’ that may serve as
indicators of risk for age-related disease and mortality and allow
earlier prevention and intervention [6, 7].
Epigenetic clocks were initially developed to accurately

estimate chronological age from predictable changes over aging
in DNAm patterns, also referred to as ‘DNAm age’ or ‘epigenetic
age’ [8]. Deviations of estimated ‘epigenetic age’ from chronolo-
gical age are termed epigenetic ‘age acceleration’ or ‘age
deceleration’ if the estimated epigenetic age is older or younger
than the chronological age, respectively. This deviation was shown
to better predict a broad range of health outcomes and mortality
risks than chronological age or epigenetic age estimation alone
[9]. Different epigenetic clocks rely on different DNAm profiles and
likely represent different, not yet fully understood, biological
mechanisms underlying the aging process [7, 10, 11].

Epigenetic clocks are considered to capture both chronological
and biological information, and have been used to investigate
health and disease [6]. DNAm phenotypic age estimator
(PhenoAge) and DNAm GrimAge [12, 13], tools developed more
recently, are referred to as ‘biological clocks’, as opposed to the
first ‘chronological clocks’ [8, 14, 15]. These clocks are supposed to
represent inter-individual variability contributing to functional
decline and disease with age [16], because they were trained on
various age-related biological and health-related measures rather
than age alone [7, 12, 13]. PhenoAge was constructed from a
weighted average of chronological age and nine additional clinical
biomarkers (full list in supplementary methods, [12]). GrimAge was
constructed from chronological age, sex, DNAm-based surrogates
for smoking pack years and seven plasma proteins (full list in
supplementary methods, [13]). The Dunedin Pace of Aging
Methylation (DunedinPoAm), a modification of the former ‘Pace
of aging’ measurement [17, 18], was developed using longitudinal
data, which enabled investigation of change in 18 age-associated
biomarkers over time within individuals and represents the ‘pace’
rather than the ‘state’ of biological aging (BA).
Many factors influence aging trajectories and several studies

have reported accelerated epigenetic age with psychiatric
disorders and in individuals exposed to adversity [19]. Epigenetic
age acceleration (AgeAccel) has been shown mainly in individuals
suffering from posttraumatic stress disorder (PTSD) [20–27] and
depression [28], but also in bipolar disorder [29] or anxiety-related
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disorders [30] and in individuals exposed to risk factors for
psychiatric illness, such as childhood adversity [24, 31–33] or
cumulative lifetime stress [34–36].
So far, most studies have focused on single psychiatric disorders

and not always assessed exposures to adversity. However,
psychiatric comorbidity is the rule rather than the exception and
exposure to adversity is frequent [37]. It remains unclear whether
there are cumulative effects of comorbidity and co-exposure to
adversity on BA. In addition, some have proposed analysis using
multiple clocks in the same cohorts to explore different
components of BA, not captured with single clocks [7, 11].
Our aim was to evaluate the relation of ‘burden of psychiatric

disease’, i.e., a weighted score of psychiatric diagnoses derived from
a structured diagnostic interview to five different epigenetic clocks
(Horvath, Hannum, PhenoAge, GrimAge and DunedinPoAm)
calculated from DNAm measured in peripheral blood cells from
transdiagnostic samples, including healthy controls. We additionally
evaluated how this relationship is altered with exposure to adversity
in childhood, and cumulative stress later in life.

METHODS AND MATERIALS
Study population
The study sample (N= 429) included subjects with psychiatric disorders
and self-reported healthy controls who consented for the participation of
two studies conducted at the Max Planck Institute of Psychiatry (MPIP) in
Munich, Germany: the Biological Classification of Mental Disorders study
(BeCOME, registered on ClinicalTrials.gov, TRN: NCT03984084, N= 308) [38]
and a subset of patients recruited for major depression from a clinical
psychotherapy study (OPTIMA, registered on ClinicalTrials.gov, TRN:
NCT03287362; N= 121) [39] who agreed to participate in an additional
biobanking project. Demographic information including age, sex, ethnicity
and socioeconomic status was collected using self-reports as stated in the
study protocols (see 38, 39 for inclusion and exclusion criteria). Socio-
economic data available for both studies included school education and
household income per month (see Table 1). Self-reported data on somatic
diseases, including metabolic, cardiovascular, respiratory, immunological
and other diseases, was available for 342 participants of both studies
(BeCOME=270, OPTIMA=72) and was evaluated as a cumulative score (full
list of items in supplementary methods).
All participants provided written informed consent. The studies, all

procedures, specific sample and data withdrawal request for our research
from the MPIP Biobank were approved by the LMU ethics review board.

Measures
Childhood maltreatment. Childhood maltreatment (CM) was assessed
with the short version of the Childhood Trauma Questionnaire (CTQ), a
retrospective self-report of exposure to different types of abuse and
neglect experiences (details in supplementary methods, [40, 41]). Reported
CM was summed to a total score of cumulative CM (Table 1, [42]).
Additionally, for each subject, the subscales of abuse (emotional, sexual,
physical) or neglect (physical, emotional) were categorized into four levels
- none, mild, moderate or severe as previously described [41], and
operationalized dichotomously (exposed vs. non-exposed). Participants
were defined as exposed if moderate or severe exposure was reported in
any subscale (details in supplementary methods). To increase power for
the interaction analysis, participants who answered ‘no’ in the M-CIDI
trauma section for two types of childhood abuse were included in the non-
exposed group (N= 51 for physical and N= 48 for sexual abuse). Final data
was obtained for N= 391 for physical abuse and N= 388 for sexual abuse.

Lifetime stress. Lifetime exposure to critical life events (other than CM)
was assessed with the short version of the self-reported Munich Event-
Questionnaire (MEL) consisting of 27 items covering potentially stressful
events from different areas of life and their frequencies (questionnaire only
available for the BeCOME cohort) [43]. A total score was calculated using
the number of events weighted by their frequencies (Table 1, details in
supplementary methods).

Burden of psychiatric disease. Participants underwent a modified version
of the computer-based Munich-Composite International Diagnostic Inter-
view (M-CIDI) (DIA-X/M-CIDI, [44]) conducted by trained study assistants

Table 1. Demographics of cohorts.

BeCOME
(N= 301)

OPTIMA
(N= 119)

Overall
(N= 420)

Age (years)

Mean (SD) 35.3 (12.1) 42.9 (13.5) 37.4 (12.9)

Median
[Min, Max]

31.8
[18.7, 66.2]

44.7
[19.2, 73.6]

34.0
[18.7, 73.6]

Sex

Female 193 (64.1%) 65 (54.6%) 258 (61.4%)

Male 108 (35.9%) 54 (45.4%) 162 (38.6%)

Ethnicity

African 1 (0.3%) 0 (0%) 1 (0.2%)

Asian 6 (2.0%) 0 (0%) 6 (1.4%)

Caucasian 267 (88.7%) 94 (79%) 361 (86.0%)

Hispanic/Latin-
american

3 (1.0%) 0 (0%) 3 (0.7%)

Oriental 7 (2.3%) 0 (0%) 7 (1.7%)

Other 10 (3.3%) 0 (0%) 10 (2.4%)

Unknown 2 (0.7%) 0 (0%) 2 (0.5%)

Missing 5 (1.7%) 25 (21.0%) 30 (7.1%)

BMI (kg/m2)

Mean (SD) 23.8 (4.57) 26.6 (5.97) 24.6 (5.16)

Median
[Min, Max]

22.7
[15.4, 47.6]

25.6
[17.3, 52.9]

23.2
[15.4, 52.9]

Missing 8 (2.7%) 0 (0%) 8 (1.9%)

Smoking status

Current smoker 1 (0.3%) 4 (3.4%) 5 (1.2%)

Former smoker 165 (54.8%) 90 (75.6%) 255 (60.7%)

Never smoker 135 (44.9%) 25 (21.0%) 160 (38.1%)

Childhood maltreatment

Mean (SD) 39.7 (14.4) 43.8 (15.3) 40.9 (14.8)

Median
[Min, Max]

35.0
[25.0, 88.0]

41.0
[25.0, 96.0]

37.0
[25.0, 96.0]

Missing 58 (19.3%) 22 (18.5%) 80 (19.0%)

Lifetime stress

Mean (SD) 19.9 (13.0) - 19.9 (13.0)

Median
[Min, Max]

18.0 [0, 59.0] - 18.0 [0, 59.0]

Missing 58 (19.3%) 119 (100%) 177 (42.1%)

Burden of psychiatric disease

Mean (SD) 5.87 (5.53) 9.37 (5.02) 6.89 (5.61)

Median
[Min, Max]

4.0 [0, 33.0] 9.0 [2.0, 24.0] 6.0 [0, 33.0]

Missing 21 (7.0%) 4 (3.4%) 25 (6.0%)

School education

12-13 years 200 (66.4%) 45 (37.8%) 245 (58.3%)

12 years 20 (6.6%) 17 (14.3%) 37 (8.8%)

10 years 32 (10.6%) 17 (14.3%) 49 (11.7%)

9 years 14 (4.7%) 19 (16.0%) 33 (7.9%)

No school
graduation

0 (0%) 3 (2.5%) 3 (0.7%)

Still in school 1 (0.3%) 0 (0%) 1 (0.2%)

Other 5 (1.7%) 5 (4.2%) 10 (2.4%)

Missing 29 (9.6%) 13 (10.9%) 42 (10.0%)

Childhood maltreatment was evaluated with CTQ. Lifetime stress was
evaluated with MEL and was available only in the BeCOME cohort. Burden
of psychiatric disease was evaluated with the computer-based modified
version of the Munich-Composite International Diagnostic Interview (DIA-
X/M-CIDI).
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(details in [38, 39]) to asses current (last four weeks) or past lifetime DSM-IV
diagnosis [45]. Individuals could fulfill criteria for no, subthreshold or full
diagnoses. Subthreshold diagnoses were defined as fulfilling all but one
criterium required for a full diagnosis. Diagnoses were transferred to ICD-
10 system definitions [44, 46] and diagnoses of eating and somatoform
disorders were excluded, since these were not obtained for all participants.
To generate the burden of psychiatric disease score, two points were given
for each full diagnosis and one point for each subthreshold diagnosis (Fig.
S1). To avoid overrepresentation of specific phobias, the presence of any
rather than each specific phobia was counted as one diagnosis (Fig. S2 for
percentage of diagnostic categories).

DNA methylation
Peripheral whole blood samples were drawn from BeCOME and OPTIMA
subjects who consented for the MPIP Biobank (ethic committee application
number 338-15). DNA was extracted according to standard procedures.
Samples were randomized with regard to sex, age, child maltreatment and
self-reported case-control status using the Omixer R package [47] in a 96-
well format before DNA extraction. Bisulfite-conversion of 400 ng DNA was
performed with the EZ-96 DNA Methylation kit (Zymo Research, Irvine, CA).
Illumina Infinium MethylationEPIC BeadChip (Illumina, San Diego, CA, USA)
was used for epigenome-wide methylation analysis of 429 samples
according to manufacturer protocols. Methylation data was preprocessed
using a standard pipeline [48] with the minfi R package [49]. After loading
raw intensity values directly into R version 4.0.4 [50] and transformation
into beta-values, quality control was performed (N= 865,859 probes
remained). Samples with a mean detection p value > 0.05 (n= 7), samples
presenting with distribution artefacts in raw beta-values (n= 0) or sex
mismatches (n= 1) were excluded. Normalization was performed using
stratified quantile normalization [51] and subsequently beta-mixture
quantile normalization (BMIQ, [52]). After transforming beta-values into
M-values, we performed a principal component analysis to exclude one
outlier (>3 SD on two first principal components). Next, we corrected batch
effects sequentially with ComBat within the sva R package [53] for the
strongest associations with the principal components (plate, array and
row). Batch-corrected M-values were transformed into beta-values and
MixupMapper [54] confirmed that no sample mix-ups or swaps occurred.
The final sample included DNAm data from 420 individuals. Data have
been deposited in the Gene Expression Omnibus database (GEO) with the
primary accession: GSE222468.

Genotyping and population stratification
Genotyping was conducted using Illumina global screening arrays (GSA-
24v3-0, Illumina, San Diego, CA, US). SNPs with a call rate below 98%, a
minor allele frequency below 1% or deviation from Hardy-Weinberg-
Equilibrium (p-value < 1 × 10−05) were excluded. Furthermore, individuals

presenting with call rates below 98% were excluded. Only unrelated
individuals were included. After LD-pruning, the main multi-dimensional
scaling (MDS) components from the IBS matrix were retrieved. Samples
with outliers on MDS components (>4 SD on any of the first 10 axes) and
heterozygosity outliers (>4 SD) were removed. After QC, genotype data
was available for 421 subjects.

Calculation of epigenetic age and epigenetic age acceleration
DNAmAge of following DNAm clocks: Horvath [8], Hannum [15], PhenoAge
[12], GrimAge [13] and their corresponding AgeAccel: AgeAccelHorvath,
AgeAccelHannum, AgeAccelPheno and AgeAccelGrim were calculated on
normalized batch-corrected beta values with Horvaths’ New Methylation Age
Calculator (https://dnamage.genetics.ucla.edu/new, 8). Using the advanced
analysis option, cell type proportions (CD8T, CD4T, NK, Bcell, Mono, Gran) were
calculated as suggested by Houseman et al. [55, 56]. DunedinPoAm was
calculated with the DunedinPoAm38 R package (https://github.com/danbelsky/
DunedinPoAm38, 18). AgeAccel (residuals from a regression of estimated
epigenetic age on chronological age) was used for further analysis. ‘Age
acceleration’ (positive score) or ‘age deceleration’ (negative score) of an
individual were defined according to the direction of the deviation (Fig. S3).

Statistical analysis
Pearson correlations were calculated between chronological age and each
of the calculated DNAmAge estimations as well as among AgeAccel and
DunedinPoAm. Median absolute difference was calculated as suggested by
Horvath [8] for each of the DNA methylation age estimators and was within
the accepted range (see supplementary methods). The effect of burden of
psychiatric disease as independent variable on five measurements of
biological age: AgeAccelHorvath, AgeAccelHannum, AgeAccelPheno,
AgeAccelGrim and DunedinPoAm as dependent variables was investigated
with multiple regression modeling. All models were adjusted for study
cohort and covariates that had previously been shown to be associated
with AgeAccel: sex [8, 12, 15, 28, 57], ethnicity [57, 58], smoking status
[12, 59, 60], body mass index (BMI) [9, 12, 28, 60] and cell type proportions
[61]. Since AgeAccel is by definition already adjusted for age, chronological
age was added as a covariate only to the DunedinPoAm model. If a
covariate had already been used in the training of the epigenetic clock, it
was excluded from the specific model (sex and smoking in GrimAge and
BMI in DunedinPoAm). For the interaction analysis, an interaction term of
burden of psychiatric disease with physical or sexual abuse was included to
predict DunedinPoAm. Cell type proportions were intercorrelated (Fig. S4),
so including all in one model led to high variance inflation. Granulocytes
were dropped from the model, since they were correlated with most other
cell types and displayed the highest value (GVIF= 158.53). Smoking status
was predicted using the EpiSmokEr R package [62]. P-values of different
intercorrelated AgeAccel regression models (Fig. 1B) were adjusted for
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Fig. 1 Correlograms of DNA methylation age estimations and accelerations of four DNA methylation clocks and DunedinPoAm.
A Pearson correlation coefficients (r) of estimated DNA methylation age by different DNA methylation clocks and age. B Pearson correlation
coefficients (r) of calculated DNA methylation age acceleration by four different DNA methylation clocks and DunedinPoAm.
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multiple testing based on estimated effective number of tests using the
Galwey method within the poolr R package [63, 64] resulting in four
independent tests of the main analyses. We used stringent Bonferroni
correction to correct for the two types of abuse (sexual and physical) and
the two DNAm clocks. This is rather stringent given that sexual and
physical abuse as well as the two DNAm clocks are correlated (rs= 0.39
and r= 0.55). Beta estimates, standard error and adjusted R2 are reported.
The first two MDS components of genotype array data were included to
account for population stratification. Burden of psychiatric disease was
right-skewed and therefore square root transformed when used as an
outcome. All statistical analyses were conducted in R version 4.0.4 [50].

RESULTS
Prediction of chronological age and DNA methylation age
acceleration
DNAmAge estimation of all investigated clocks strongly correlated
with chronological age (r= 0.91–0.94) and among the different
estimates themselves (r= 0.89–0.93, Fig. 1A, Fig. S5). Correlations
of DNAmAge acceleration (AgeAccel), however, varied between
the different estimators, showing only a moderate correlation
among the two ‘chronological clocks’ and AgeAccelPheno and
even less correlation of these with AgeAccelGrim and Dunedin-
PoAm (Fig. 1B).
DunedinPoAm showed a weak positive correlation with

AgeAccelHannum (r= 0.16, p= 0.001) and AgeAccelPheno
(r= 0.28, p= 5.977 × 10−09) and the overall strongest positive
correlation with AgeAccelGrim (r= 0.55, p < 2.988 × 10−34) (Figure
S6). Hence, individuals with advanced ‘biological age’ (‘state of
aging’, calculated with AgeAccelGrim) also presented a faster
‘pace of aging’.
Even though all clocks strongly correlated with chronological

age, the number of overlapping CpGs for DNA age estimation is
very low, at most 35 CpGs between PhenoAge and the Horvath
clock (Fig. S7).

Association of burden of psychiatric disease with DNAm age
acceleration and DunedinPoAm
AgeAccelGrim and DunedinPoAm, but not the other clocks,
showed significant positive bivariate associations with burden of
psychiatric disease (rs= 0.24, p= 2 × 10−06 and rs= 0.21,
p= 2.6 × 10−05 respectively, Fig. 2A, C). This correlation remained
significant when accounting for the covariates described in the
methods section in multiple linear regressions for AgeAccel
measured by the different DNAm clocks. Burden of psychiatric
disease was significantly associated with AgeAccelGrim (β= 0.155,
SE= 0.032, t= 4.81, p= 2.24 × 10−06, p-adj= 8.96 × 10−06, R2-
adj.= 0.216) and DunedinPoAm (β= 0.002, SE= 0.0005, t= 3.19,
p= 0.0015, p-adj.= 0.006, R2-adj. 0.33, Table 2). We thus focused
on these two clocks for all further investigations. Post hoc
stratification by sex showed the same direction of effects in both
sexes (see Table S1 and Table S2). Excluding participants with
extreme burden of psychiatric disease scores (>4 SD= 22.4 of the
median=6, N= 3) did not change the results with regards to
effect, direction and significance. Usage of psychiatric medication
had no significant association (p= 0.72 & p= 0.61, yes= 106 vs.
no= 297) and did not change the results with regards to effect,
direction and significance. Somatic disease score showed a
significant association with DunedinPoAm (β= 0.004, SE= 0.0016,
t= 2.598, R2-adj.=0.33, p= 0.009, available only for N= 318) but
not AgeAccelGrim. There was a positive correlation between
psychiatric and somatic burden of disease (spearman correlation
rs= 0.28). When adding the burden of psychiatric disease to the
full model, somatic disease score as well as burden of psychiatric
disease were non-significant (final reduced N= 299 available for
this analysis) but the direction of association for burden of
psychiatric disease remained the same, and was significant by
itself in this subsample (p= 0.001 for AgeAccelGrim). The
consistent directions of effects are depicted for DunedinPoAm

and AgeAccelGrim with stratification by somatic disease status
(non= 85, low=154, high= 103, Fig. S8).
To investigate whether the same association would be present,

if only one disease was investigated, we repeated the analysis for
the most common diagnosis in our sample, namely major
depression (including all severities and coded as present versus
not-present). In a multiple linear regression, we found no
significant association of DunedinPoAm with both, current
diagnosis (within the last month, p= 0.07, N= 149 with vs.
N= 222 without) and lifetime diagnosis of major depression (over
a month ago, p= 0.169, N= 63 with vs. N= 308 without).
Similarly, associations with AgeAccelGrim were not significant in
this analysis (current diagnosis: p= 0.082, N= 146 with vs.
N= 218 without; lifetime diagnosis: p= 0.415, N= 60 with vs.
N= 304 without).

Interplay of childhood maltreatment and lifetime stress with
burden of psychiatric disease and DunedinPoAm
We next investigated, whether childhood maltreatment (CM) and
lifetime stress (LS) might influence the associations of burden of
psychiatric disease with these two clocks, given that CM (total
score measured by CTQ) and LS (total score measured by MEL)
were both significantly associated with burden of psychiatric
disease (β= 0.034, SE= 0.004, t= 7.796, p= 1.12 × 10−13, R2-
adj.= 0.270 and β= 0.035, SE= 0.008, t= 4.422,
p= 1.58 × 10−05, R2-adj.= 0.101 respectively) accounting for age,
sex, ethnicity and study cohort (LS was only available in one
cohort, details in the methods section). When analyzing associa-
tion with the two clocks, CM but not LS was associated with
DunedinPoAm when correcting for age, sex, ethnicity, smoking
status, proportion of cell types and study cohort (β= 0.0004,
SE= 0.0002, t= 1.987, p= 0.047, R2-adj.= 0.32, Fig. 3), while no
significant associations were found with AgeAccelGrim. When
including burden of psychiatric disease in the model, neither CM
nor burden of psychiatric disease nor their interaction term
remained significant predictors of DunedinPoAm (β= 0.0001,
SE= 0.0002, t= 0.552, p= 0.58), which may relate to a reduction
in sample size (N= 301). We then performed an interaction
analysis focusing on more severe forms of maltreatment:
moderate to severe physical and/or sexual abuse (exposed vs.
non-exposed, using combined information from CTQ and M-CIDI)
with burden of psychiatric disease on DunedinPoAm. The
presence of moderate to severe physical abuse (but not sexual
abuse) interacted with burden of psychiatric disease with nominal
significance (but not withstanding correction for multiple testing)
to increase the association with the pace of aging measured with
DunedinPoAm (β= 0.005, SE= 0.002, t= 2.340, p= 0.02, adj.p=
0.08 Table S3). The association of DunedinPoAm with burden of
psychiatric disease and CM was not influenced by school
education and household income (Fig. S9). In fact, burden of
psychiatric disease showed a steeper slope of association with
faster pace of aging in the 36 individuals exposed to physical
abuse (Fig.S10).

DISCUSSION
In this study, biological aging (BA) was quantified with five
different measurements of epigenetic age in patients with
psychiatric disorders and healthy controls. Subjects with a higher
burden of psychiatric disease, a cumulative diagnostic score of
psychiatric disorders across lifetime, presented with higher
AgeAccel as measured by DNAm GrimAge and faster pace of BA
as measured by DunedinPoAm. Differences in epigenetic age
acceleration remained significant after accounting for age, sex,
ethnicity, BMI, smoking status, cell type proportions and
investigated cohort. This association was not driven by differences
in socioeconomic status, psychiatric medication or somatic disease
alone. The association of burden of psychiatric disease with the
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Table 2. Result of multiple linear regressions of DNA methylation clocks with burden of psychiatric disease.

Burden of psychiatric disease

Predicted variable estimate SE t value p value adj. p value

AgeAccelHorvath −0.050 0.0420 −1.194 0.233 0.933

AgeAccelHannum −0.064 −0.0410 −1.571 0.117 0.468

AgeAccelPheno −0.040 0.0570 −0.706 0.481 1.000

AgeAccelGrim 0.155 0.0323 4.810 0.000002 0.000009

DunedinPoAm 0.002 0.0005 3.195 0.0015 0.006

The models were controlled for age, sex, BMI, study, ethnicity, smoking status and cell proportions of CD8T, CD4T, NK, B lymphocytes and Monocytes except if
covariate was used for the construction of specific clocks (in AgeAccelGrim sex and smoking status and in DunedinPoAm BMI were omitted). Significant effects
are shown in bold and were adjusted for multiple testing. SE standard error.

Fig. 2 Associations between burden of psychiatric disease and AgeAccelGrim or DunedinPoAm. Spearman correlation between
AgeAccelGrim (years) (A) or DunedinPoAm (C) on the y-axis and burden of psychiatric disease on x-axis (Spearman correlation coefficient, rs).
B, D display box plots and p-values from an analysis of variance and the corresponding adj. p-values from a post hoc Tukey test after
categorizing subjects by status of burden of psychiatric disease – control (no current subthreshold or full diagnosis, N= 47), low (N= 182) and
high (N= 166) categorized by the median score of participants with score > 0 (median= 7). Data was missing for 25 participants.
****p ≤ 0.0001, ***p ≤ .001, **p ≤ .01; *p ≤ .05. ns not significant.
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pace of aging (DunedinPoAm) was further accelerated in
individuals exposed to childhood physical abuse. Importantly,
the association was absent when only including the presence or
absence of the most common single psychiatric diagnosis in the
sample, major depression. Overall, these findings suggest that an
increased transdiagnostic burden of psychiatric disease is
associated with epigenetic age acceleration in the DNAm GrimAge
clock and faster pace of aging (DunedinPoAm), the latter being
exacerbated by additional exposure to physical abuse.
Our findings point to the cumulative risk conferred by comorbid

psychiatric disorder on BA and thus age-associated disease.

Interestingly, associations are observed even within the spectrum
of mood and anxiety disorders. Stronger associations with age-
associated diseases and reduced life expectance have been
reported for other psychiatric disorders (e.g. schizophrenia, [5]).
Our lack of association with the diagnosis of depression alone
differs from early findings [28], but possibly due to heterogeneity
in previous studies investigating single diagnoses that may not
have mapped all lifetime comorbidity. Since somatic disease was
only available in a subset of individuals and was intercorrelated
with burden of psychiatric disease we were not able to
disentangle individual effects.

Fig. 3 Associations between DunedinPoAm and childhood maltreatment or lifetime stress. Spearman correlation between DunedinPoAm
(years of physiological change per chronological year) (A, C) on the y-axis and childhood maltreatment measured by CTQ score or cumulative
lifetime stress measured by MEL score on the x-axis (Spearman correlation coefficient, rs). B displays a box plot and a p-value from a t-test of
dichotomized childhood maltreatment status – abused (N= 149) vs. not abused (N= 191). The status abused was given if participant had
moderate or severe abuse in any of the subscales of the questionnaire. Data was missing for 80 participants. D displays a box plot and a p-
value from a t-test of dichotomized cumulative lifetime stress status – low (N= 128) vs. high (N= 115) lifetime stress categorized by the
median score of the participants (median=18). This questionnaire was only available in the BeCOME cohort and was missing for 56
participants. ****P ≤ 0.0001; ***p ≤ .001; **p ≤ .01, *p ≤ .05. ns not significant.
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In addition to psychiatric diseases themselves, major risk factors,
such as childhood maltreatment (CM) or chronic psychological
stress (lifetime stress, LS) also have been associated with lasting
changes in biological systems and shown to negatively influence
age-related diseases [65]. Meta-analytic evidence of leukocyte
telomere length shortening, a different measure of aging,
described a relation with CM [66, 67] and several psychiatric
disorders [68–70]. As for epigenetic age estimates, associations of
psychological stress with epigenetic age acceleration have been
reported [22, 34, 71]. Furthermore, faster pace of aging (calculated
with the older 2015 version) was found in subjects with higher
adverse childhood experiences [72] but others did not find
significant association of epigenetic aging with CM [22, 34, 36].
Our analysis showed not only the expected association of CM

with the burden of psychiatric disease, but also with the pace of
aging (DunedinPoAm). In fact, we observed an interaction of
burden of psychiatric disease with exposure to physical abuse,
with exposed subjects having an even higher pace of aging with
increased burden of disease. Although not surviving Bonferroni
correction, these associations hint towards epigenetic mechan-
isms that influence both, the process of aging and development of
psychiatric stress-related disease, reflecting a joint influence on
faster pace of aging. In fact, a history of CM was shown to lead to
an earlier age at onset, great symptom severity and comorbidity
and poorer treatment outcome [73]. Teicher et al. argue that
individuals with CM may represent a transdiagnostic subtype and
should be used for stratification of patients with psychiatric
disorders [73]. CM, therefore, may also represent a transdiagnostic
risk factor influencing BA, but these findings need replication in
larger cohorts.
The lack of association with LS, while supporting the theory

describing the importance of developmental time-point for the
impact of environmental stress states on epigenetics [74], could
also be related to lack of power or complex confounding of these
assessments.
As expected, associations were not observed in all investigated

DNAm clocks. To date, it is unknown whether different clocks
indeed quantify different facets of the aging process [10]. Our
findings are in line with previously reported low agreement
among different measures of BA (r= 0.3–0.5, even lower between
pace of aging and chronological clocks [10, 75] (Fig. S6). Different
DNAm clocks, as previously stressed [12], do not share many CpGs
(Fig. S7), supporting the hypothesis that different estimators
capture different underlying biological mechanisms of aging and
age-related diseases. Therefore, estimators might be more or less
useful as biomarkers for a specific disease phenotype [11]. For
example, DunedinPoAm possibly captures biological processes
associated with CM (specifically physical abuse) better than others.
Associations also might be specific to a single epigenetic clock
[76] or a specific type of CM [33].
When considering our results, several important limitations

should be acknowledged. Our cohort included mainly Caucasians,
that also presented with several additional factors that have been
shown to possibly positively influence BA [77]. The majority of the
subjects had at least 12 years of high school education (67,1%)
and had a mean BMI of 24.6 (kg/m2). Only very few of the
participants were current smokers and close to 40% never
smoked. Accordingly, we found generally favorable BA in our
cohort (Table S4). Furthermore, some diagnoses are under-
represented in our analysis (Fig. S2). Therefore, an investigation
in a larger, ethnically, diagnostically and socioeconomically more
heterogenous population will be important before generalizing
our findings. Despite considering many covariates in the analysis
(individual effect sized delineated in Table S5), there might be
other unknown covariates driving the association including
physical activity [60, 78] or dietary habits [60]. Moreover,
measurements of CM and LS were collected retrospectively in
adulthood, and might reflect different information than

prospective forms of assessment [79]. Furthermore, our maltreat-
ment exposed group was rather small and the interaction analysis
will need replication. Finally, we performed a cross-sectional
analysis so we cannot identify causal relationships or determine
the direction of effect. Due to the cross-sectional nature of our
data as well as concerns of temporal distinction and of reverse
causation, we did not perform a mediation analysis to explore the
relationships between CM, burden of psychiatric disease and
somatic disease on biological aging. This important topic needs to
be explored in future longitudinal studies.
Our strongest and most consistent associations were observed

with DunedinPoAm. It represents the ‘rate’ of BA and is scaled with
‘years of physiological change per chronological year’ rather than
units of years [17]. Although our results are preliminary and
explorative in nature, they represent the first investigation of
DunedinPoAm in a larger clinical psychiatric population. Epigenetic
clocks as biomarkers, integrate multiple, partly correlated, features,
that contribute to biological aging, and although the independent
relative variance explained by burden of psychiatric disease is low
(R2= 0.035), individuals with higher burden of psychiatric disease
would be at higher risk for accelerated biological aging. Increased
pace of aging has been associated with increased morbidity and this
biomarker could thus provide information on which patient may
benefit most from interventions for modifiable risk factors [80]. Given
the dramatically shortened life expectancy of psychiatric patients,
improving detection and management of psychiatric patients at risk
for age-associated diseases, already at young age, can contribute to
personalized medicine and reduction of mortality. For this, evaluation
of change in BA after interventions such as antidepressant
medication or running therapy would be important, to evaluate
their actual biological impact. This is currently attempted in a
prospective randomized trial in MDD and anxiety disorders [81]. As
such, measure of BA may serve as important biomarker to improve
life expectancy in psychiatric patients.
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