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Abstract 

Dynamical interplays in emotions have been investigated using vector autoregressive (VAR) 

models, whose estimates can be used to cluster participants into unknown groups. The present 

study evaluated a clustering algorithm, the alternating least square (ALS) algorithm, for accuracy 

in predicting individual group membership. We systematically manipulated (a) the number of 

variables in a model, (b) the size of group differences in regression coefficients, and (c) the 

number of regression coefficients that vary across the groups (i.e., effective features). The ALS 

algorithm works reliably when there are at least 5 effective features with very large group 

differences in a 5-variable model; and 9 effective features with very large group differences in a 

10-variable model. These findings suggest that the ALS algorithm is sensitive to group 

differences that are present only in several coefficients of a VAR model, but that the group 

differences have to be large. We also found that the ALS algorithm outperforms another 

clustering method, Gaussian mixture modeling. The ALS algorithm was further evaluated with 

unbalanced sample sizes between groups and with a greater number of groups in data (Study 2). 

A real data application was provided to illustrate how to interpret the detected group differences 

(Study 3). 

 

Keywords: vector autoregressive model, emotion dynamics, clustering, experience sampling 

method  
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Clustering Individuals on Limited Features of a Vector Autoregressive Model 

Dynamic interplays between symptoms and/or emotions have been gaining attention in 

recent years. Symptom connectivity is expected to represent or even predict individual courses of 

development in psychopathology and to reveal how symptom clusters emerge within and across 

different psychopathologies (e.g., Borsboom, 2017; Wichers, Schreuder, Goekoop, & Groen, 

2019). Studies investigating dynamic processes between different emotions in daily life (e.g., Pe 

& Kuppens, 2012) showed that a current emotion influences the experience of another emotion at 

the next time point even after controlling for current levels of that emotion. Such short-term 

prospective associations of symptoms and emotions have been studied in various types of 

psychopathology (Wigman et al., 2015), such as depression (Pe et al., 2015), post-traumatic 

stress disorder (Greene, Gelkopf, Epskamp, & Fried, 2018), and schizophrenia (Klippel et al., 

2018). These findings hold implications regarding how psychopathology is characterized by the 

chains and sequences (or even causalities) of symptoms and/or emotions.  

Vector Autoregressive (VAR) Model 

A Vector Autoregressive (VAR) Model has been used to study person-specific dynamic 

interplays between psychopathological symptoms or emotions, which is typically fitted on 

intensive longitudinal data acquired through the experience sampling method (ESM) or 

ecological momentary assessment. In a typical ESM study, each participant receives around 5–10 

signals per day on their smart device and is asked to report their current mood, thoughts, and 

behavior in response. Such ESM data are a subject of time series analyses, including 

autoregressive (AR) models to capture the persistency of affective states (e.g., Jahng, Wood, & 

Trull, 2008) and VAR models to estimate prospective associations between multiple time series. 

A VAR model is formulated as a set of regressions where variables are predicted by past states of 

the variables (including the lagged outcome variable). In the psychopathology literature, it is 
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common to use a lag-1 model, i.e., VAR(1), which can be described as follows (e.g., Bulteel, 

Tuerlinckx, Brose, & Ceulemans, 2016; Schuurman, Ferrer, de Boer-Sonnenschein, & Hamaker, 

2016): 

 𝒀𝑡𝑖 = 𝒄𝑖 + 𝚽𝑖𝒀𝑡−1𝑖 + 𝝎𝑡𝑖 (1) 

where Yti is an M-length vector containing the observed values of M-number variables at time t 

for participant i; ci is also a vector, representing the intercepts of the M variables; Φi is an M×M 

matrix containing the regression coefficients of the lagged variables Yt-1i; and ωit is an M-length 

vector of innovations (errors) at time t, which are independent across time points. Note that the 

number of observations, Ti, can vary across individuals. The entries of the diagonal of Φi are the 

autoregression coefficients reflecting resistance to change (or emotional inertia in the case of 

studies investigating emotional dynamics); these coefficients are known to, e.g., predict current 

and future levels of depressive symptoms (Kuppens, Allen, & Sheeber, 2010; Kuppens et al., 

2012). A cross-regression coefficient represents the prospective effect of one variable on another 

(e.g., Bringmann, Lemmens, Huibers, Borsboom, & Tuerlinckx, 2015)
1
.  

As ESM data often have a nested structure due to repeated measurements, individual 

VAR models have been specified by individualistic (or single-subject) estimation or hierarchical 

modeling; therefore, the auto- and cross-regression coefficients are typically assumed to vary 

across individuals. For the individualistic estimation, a VAR model can be fitted on each 

participant, which yields individual regression coefficients (e.g., Zheng, Wiebe, Cleveland, 

Molenaar, & Harris, 2013). In general, this individualistic approach is straightforward and easy to 

                                                           
1
 A VAR model can be mapped onto a network diagram with nodes representing variables and with edges 

representing connectivity (cross-regression coefficients) between the variables. In ESM data, a “network” can be 

defined for each individual, which provides indices that characterize individual psychological networks (e.g., 

centrality) in analogy to a social network. There is, however, an ongoing debate on how to conceptualize and 

configure an individualistic psychological network, for which the direct application of the social-network measures 

may not be appropriate due to the conceptual differences (Bringmann et al., 2019). Although such a psychological 

network is out of our focus, the network analysis (on VAR estimates) can be an interesting direction to model the 

interrelations of symptoms and/or emotions.  
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implement, but sometimes yields unreliable estimates when the number of data points is limited 

for a person (e.g., Katahira, 2016). This is mainly because the individualistic estimation does not 

consider the group-level population distribution of model parameters, which can be an extra 

source of information that improves estimation precision at the individual level (e.g., Ahn, 

Krawitz, Kim, Busmeyer, & Brown, 2011).  

The hierarchical approach explicitly models the group-level population distribution in the 

frequentist (Bringmann et al., 2013, 2016) or hierarchical Bayes framework (Asparouhov et al., 

2018; Lodewyckx, Tuerlinckx, Kuppens, Allen, & Sheeber, 2011). In ESM/VAR contexts, the 

frequentist approach has been used more frequently. Here, a VAR structure is specified by 

estimating univariate hierarchical models for every variable. In each univariate model, regression 

coefficients have random effects, which allow the auto- and cross-regression coefficients to vary 

across individuals (See Study 3 for more details). These estimation techniques are also 

summarized in Epskamp et al. (2018), and are implemented as a R package, mlVAR (Epskamp, 

Deserno, & Bringmann, 2019).  

Clustering Individuals on the Basis of a VAR Structure 

Given that there are potentially meaningful individual differences in the VAR structure, it 

is clinically relevant to explore whether groups of individuals can be identified who share 

(maladaptive) features of emotion-to-emotion (or symptom-to-symptom) interrelationships; for 

example, there could be a group of individuals who have a strong association between 

momentary rumination/worry and negative affect that are assessed via ESM. This strong 

connectivity is regarded as a precursor or an early warning sign that predicts a near-future onset 

of depression (Wichers, Groot, & Group, 2016; Wichers et al., 2019). Recent methodological 

studies have proposed algorithms to cluster participants into unknown groups on the basis of the 

similarity of person-specific VAR (and other type of regression) estimates. This clustering 
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approach is expected (a) to identify a group of people who share the same or similar 

characteristics in the associations between given symptoms and emotions; and (b) to relate the 

group labels to risks of future psychopathology and prognosis of psychological treatment. 

Although our focus was specifically on clustering individuals on the basis of VAR 

estimates, there have been a number of approaches to cluster time series in general. Under the 

taxonomy of Liao (2005), the time-series clustering can be categorized into three different 

approaches, which are based on (a) the raw data, (b) features extracted from the raw time series, 

and (c) model parameters such as regression coefficients and residuals. Because we were most 

interested in the dynamic interplays between multiple time series, the current study had a 

particular focus on (c), i.e., clustering based on model parameters, which are the auto- and cross-

regression coefficients in our case. VAR-based clustering can be seen as a multivariate extension 

of autoregressive (AR) based clustering approaches. Typically, AR-based clustering targets 

autoregressive representations of a univariate time series, which are used as features for a specific 

clustering technique such as finite mixture modeling (e.g., D’Urso, Di Lallo, & Maharaj, 2013; 

Frühwirth-Schnatter & Kaufmann, 2008). 

The mixture-modeling approach assumes that regression coefficients are drawn from a 

mixture of multiple distributions; e.g., the finite Gaussian mixture model (GMM) assumes that 

each group of participants follows different normal distributions, and can estimate probabilistic 

group membership for each participant. Although this type of clustering has been implemented in 

various software packages (R package flexmix, which is for non-hierarchical data; Leisch, 2019), 

it typically (as noted above) targets univariate models such as standard or multilevel regressions, 

including growth curve models (e.g., proc traj; Jones, Nagin, & Roeder, 2001). Extending this 

GMM approach into multi time series is computationally demanding (if not impossible), because 

the number of regression coefficients increases exponentially as the number of variables in a 
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model increases; furthermore, each regression coefficient may follow different group 

distributions, which require additional free parameters to estimate.   

A possible workaround to apply GMM in the individual (or hierarchical) VAR context is 

the use of a two-step estimation scheme: i.e., (a) to fit a generative (or VAR) model to each 

participant, and (b) to submit the individual estimates of  the model parameters to any clustering 

analysis. An example implementation can be found in Zheng et al. (2013), where the VAR(1) 

was fitted to each individual to model the interplays between substance use craving and negative 

affect and tabacco use. The estimated person-specific regression coefficients were then used for 

hierarchical clustering. Brodersen et al. (2014) used GMM to cluster individuals on the person-

specific estimates of neural dynamics between brain regions of interest. They first processed the 

brain-imaging time series by a generative model (here: dynamic causal model) to obtain person-

specific parameter estimates that represent neural connectivity. These parameter estimates were 

used as a similarity metric for further GMM clustering. A more recent study (Ernst, Timmerman, 

Jeronimus, & Albers, 2019) combined the individualistic estimation of VAR and clustering by 

GMM, suggesting that GMM has clear advantages over the traditional hierarchical clustering 

and/or non-probabilistic clustering methods
2
; for example, GMM can directly model variation 

within a cluster, allowing for flexible assumptions on the orientation and distribution of different 

clusters. Also, information criteria are available to determine the number of clusters. Possible 

concerns were that (a) clustering performance could be affected by precision of the individual 

estimates of VAR parameters and that (b) GMM might need further dimension reduction or 

                                                           
2
 Performance of the hierarchical clustering on individual VAR estimates was already examined by Bulteel et al. 

(2016). The outputs of the hierarchical clustering were used as initial values for the ALS optimization, which are 

known to be less accurate than the final predictions of the ALS algorithm. Therefore, we did not include this 

approach in the current evaluation. 
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feature selection because the feature space for VAR clustering (i.e., Φ matrix) likely has a large 

number of random dimensions that do not contribute to the clustering (Scrucca & Raftery, 2014).  

An alternative clustering approach for VAR models is the alternating least squares (ALS) 

algorithm, proposed by Bulteel et al. (2016). This algorithm does not assume a specific 

distribution for a regression coefficient; instead, it searches for the best partitioning of 

participants by minimizing prediction errors (or residuals) of VAR models that are separately 

fitted on the given groups. The algorithm mainly consists of three steps of optimization. First, 

group membership is tentatively assigned to each individual. This initial membership is given by 

a certain criterion on the basis of other clustering methods such as hierarchical clustering. 

Second, a VAR model is estimated for each group but not on each individual. This means that 

data from the individuals in the same group is combined to estimate a group-wise VAR model; 

therefore, ci and Φi only vary across groups but are identical within a group. The models’ 

prediction errors (residuals) are evaluated to update individual group membership. Here the loss 

function is defined as a sum of prediction errors (i.e., the differences between the observed vs. 

predicted y values) across time points and participants: 

 

𝐿𝑘 = ∑∑(𝒚𝑖𝑡 − 𝒚𝑖�̂�)
2

𝑇𝑖

𝑡

𝐼

𝑖

 

(2) 

where k represents a particular group of K groups, I is the number of participants, and Ti is the 

number of observations (per participant). The predicted value, ŷit, for M variables at time t (t > 1) 

for participant i is given by the estimated VAR model for Group k. This procedure provides as 

many prediction errors as the number of groups for each participant; e.g., with two groups, two 

VAR models are fitted to each participant, resulting in two prediction errors per person. Third, 

group membership is updated according to prediction errors, i.e., by re-assigning participants to 

the group where they had the minimum prediction error. These steps are repeated to search for 
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the most appropriate group membership, defined as the membership that minimizes the total 

prediction errors (i.e., Lk). Because prediction errors are evaluated on all the VAR models (not 

just on a univariate model), the ALS algorithm considers all variables in a model simultaneously 

to optimize the group partitioning. Note that the ALS algorithm does not explicitly address the 

hierarchical structure of data. Instead, it assumes a VAR model per group, whose parameters are 

homogenous within a group. Therefore, this approach is different from the multilevel VAR that 

has been used in the ESM/VAR literature (e.g., fitting a set of multilevel univariate models, 

allowing parameters vary across individuals even within a group).   

To test the clustering accuracy of this algorithm, Bulteel et al. (2016) performed computer 

simulations varying parameters such as the number of observations, number of clusters, and size 

of cross-regression coefficients. The results indicated that the clustering accuracy increases as (a) 

group differences in the magnitude of regression coefficients increase, and (b) the number of 

observations (per participant) increases. Although the simulations of Bulteel et al. (2016) are 

already quite thorough, they assumed no individual differences in regression coefficients within a 

cluster. In their simulations, data were generated for a VAR model with 6 variables (i.e., 30 

cross-regression coefficients to estimate). Each participant was given a homogenous set of 

regression coefficients within a cluster, but the population distributions to generate the 

coefficients could vary across clusters. For example, half of the coefficients in a model were 

sampled from a uniform distribution U[0.3, 0.5], whereas the other half were from U[0.0, 0.2]; 

and these sampled coefficients were the same across participants within a cluster. Although these 

parameter settings are consistent with the assumptions of the ALS algorithm (i.e., regression 

coefficients are identical across participants within a group), this assumption is somewhat too 

strict and it would be more natural to assume individual differences in each regression coefficient 

even within a group. More critically, this homogeneity assumption makes it difficult to scale the 



VAR CLUSTERING  10 

 

group differences that the ALS algorithm can detect, simply because the SDs of the regression 

coefficients are zero within a cluster. Furthermore, it is still unclear to what extent the ALS 

algorithm is sensitive to group differences that are present only in several coefficients of a VAR 

model. Given that a VAR model in affective dynamics contexts tends to be relatively large (e.g., 

a model with 10 variables has 100 potential auto- and cross-regression coefficients), it is very 

likely that not all (and even less than half of) the coefficients contribute to the clustering. One 

practical question is, therefore, what the minimum group distance (in terms of the number and 

size of group differences) is that can be identified by the ALS algorithm. 

In the current study, we designed computer simulations to (a) examine the performances 

of ALS (compared to GMM) approaches for VAR-based clustering, and to (b) investigate how 

many “effective features” (EF; i.e., regression coefficients that vary across true clusters) should 

be included in a VAR model for the algorithms to identify the unknown clusters reliably. We 

predicted that it would be more difficult to predict group membership when the model has fewer 

effective features and/or more non-effective features. This is because non-effective features 

typically act as noise attenuating the influences of effective features in statistical classification 

(e.g., Manning, Raghavan, & Schütze, 2009). Thus, in Study 1, we explored the conditions where 

the ALS algorithm works reliably while systematically manipulating the number of EFs as well 

as the sizes of the group differences in the EFs. GMM was also evaluated under the same 

conditions. We started our computer simulation with an ideal situation, i.e., two groups with an 

equal sample size. Next, we used another mixing rate (i.e., the balance of the sample size between 

groups; Study 2a) and assumed three groups in data (Study 2b). Study 3 was a real data 

application; we demonstrated the ALS algorithm to analyze ESM data where negative affect was 

repeatedly assessed with an ESM design.  

Study 1 
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Our computer simulations systematically manipulated (a) the number of variables in the 

model, (b) the number of effective features in the model, (c) the size of the group differences in 

regression coefficients. The ALS algorithms were applied to each dataset generated under these 

assumptions, which gave estimates of the clustering accuracy against the true (or simulated) 

group membership of participants. We also applied GMM on individualistically estimated VAR 

coefficients for the same simulation datasets, whose performance was compared to that of the 

ALS algorithm. Although the GMM approach appears to be theoretically more appropriate in a 

hierarchical dataset (i.e., allowing parameters vary across individuals even within a group), the 

individualistic VAR estimation might have more estimation errors than the ALS algorithm 

(Bulteel et al., 2016). Furthermore, GMM could be vulnerable to noise features that do not 

contribute to the clustering. Therefore, we predicted that the ALS algorithm would outperform 

the GMM approach in identifying the correct number of groups and in predicting group 

membership of participants.  

Method 

Data Generation. We manipulated the above mentioned three factors systematically, 

resulting in 2 × 3 × 3 conditions: 

1. Number of variables (5 or 10) in a VAR model 

2. Moderate, large, and very large effect sizes for group differences in regression 

coefficients: Cohen’s d = 0.5, 1.0, and 2.0 

3. Number of effective features (EFs; cross-regression coefficients that vary across groups): 

1, 5, and 9 coefficients 

Each simulation dataset consisted of 100 participants with 50 assessment occasions per 

participant. These are typical settings of ESM studies, e.g., with 10 beeps per day for seven days 
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with a compliance rate of 80% (e.g, Ebner-Priemer & Trull, 2009; van Berkel, Ferreira, & 

Kostakos, 2017). To simplify the problem, two groups with an equal number of participants (50 

vs. 50) were considered in the current simulations (cf. Study 2). The data generation processes 

were as follows: first, group-level Φ matrices were specified for the control and target group (CG 

and TG) in each condition. For example, in the 5-variable condition of EF = 1 with the very large 

effect size, group-level Φ matrices were: 

 

𝚽𝐶𝐺 =

[
 
 
 
 
0.4 0.0 0.0 0.0 0.0
0.0 0.4 0.0 0.0 0.0
0.0 0.0 0.4 0.0 0.0
0.0 0.0 0.0 0.4 0.0
0.0 0.0 0.0 0.0 0.4]

 
 
 
 

 (3) 

 

𝚽𝑇𝐺 =

[
 
 
 
 
0.4 0.0 0.0 0.0 0.0
0.0 0.4 0.0 0.0 0.0
0.2 0.0 0.4 0.0 0.0
0.0 0.0 0.0 0.4 0.0
0.0 0.0 0.0 0.0 0.4]

 
 
 
 

 (4) 

The non-zero element (0.2) represents the EF. The EF(s) were randomly allocated in non-

diagonal elements (i.e., cross-regression coefficients). Second, person-specific regression 

coefficients (Φi) were generated from these group-level Φ matrices. Autoregressive coefficients 

had no group differences, which were sampled from the same population distribution of N(0.40, 

0.01) across all participants. Half of the participants (i.e., the control group) had cross-regression 

coefficients drawn from N(0.00, 0.01), whereas the other half (i.e., the target group) had 

coefficients sampled from N(0.05, 0.01), N(0.10, 0.01), and N(0.20, 0.01) for the conditions of 

moderate, large, and very large effect sizes, respectively. Therefore, the group differences (per 

cross-regression coefficient) are interpreted as Cohen’s d = 0.5, 1.0, and 2.0. The number of these 

EFs in a VAR model was also manipulated systematically; for each of the three effect-size 

conditions, different numbers of cross-regression coefficients (EF = 1, 5, 9) were sampled from 

normal distributions with non-zero means, and the rest of the coefficients followed the zero-mean 
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normal distribution that is the same as the control. For example, in the EF = 1 condition, 50 

participants had a cross-regression coefficient that was sampled from N(0.20, 0.01) for  the very 

large size group difference; the other cross-regression coefficients were from the same 

distribution as the control, i.e., N(0.00, 0.01). This procedure was repeated for each condition of 

effect sizes and numbers of variables in the model. 

Using the sampled individual auto- and cross-regression coefficients, occasion-level data 

(i.e., responses at each ESM beep) were generated for each participant in the VAR(1) framework. 

The innovations (i.e., errors for outcome variables; ω) were sampled from N(0,1), and were 

assumed to be independent of each other. The intercept of each variable followed N(0.00, 0.01) 

with a very small covariance of 0.001. These intercept settings were used because it is common 

practice in ESM studies to center momentary variables by their person-means (so the intercepts 

should be distributed around zero and mostly independent across variables). For each of the 18 

simulation conditions, 100 datasets (i.e., 10,000 participants) were generated to obtain 

distributions of the clustering performances of the clustering algorithms. The R code used for 

these simulations is available from OSF: https://osf.io/he4c8/ 

Stability assumption. A VAR process is stable if all eigenvalues of Φ have modulus less 

than 1 (Lütkepohl, 2005). Because our simulations generated a random Φ for each participant, 

some participants could have an instable process when they had extreme values for auto- and/or 

cross-regression coefficients. We examined how often this violation took place under our 

simulation settings, which was actually at a negligible rate: 0.2 – 0.5% of all simulation runs even 

in the conditions of the largest effect size. Therefore, we did not use any corrections or rescaling 

techniques on Φ for further simulations and analyses. Another reason for this decision was that 

rescaling Φ (Bulteel et al., 2016) makes it difficult to interpret the effect sizes. 

https://osf.io/he4c8/
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Clustering by the ALS algorithm. The task of the ALS algorithm is to identify the 

number of groups that have different features in the VAR structure, and to predict the 

membership of participants in the identified groups. The ALS algorithm fits a VAR(1) model for 

each of k-number groups. The regression coefficients were therefore fixed within a group but are 

allowed to vary across groups. The optimization starts with assigning participants to the k groups. 

The initial membership is determined by hierarchical clustering (Ward method) on individualistic 

regression coefficients obtained by fitting a VAR(1) model for each participant (with the ordinary 

least square estimator; Bulteel et al., 2016).  

To optimize the group partitioning, the ALS algorithm evaluates a total sum of 

predictions errors (residuals) from the K VAR(1) models, which are sequentially estimated by 

updating the participants’ group membership. At each step of the updating, prediction errors are 

computed for each participant for each VAR(1) model. If a participant has a larger prediction 

error with the model fitted on the current group than that on the other group(s), this participant is 

re-assigned to the other group with the minimum prediction error. For example, if two groups are 

assumed with a 5-variable model, a fixed-effect VAR(1) model is estimated for each group (here 

group memberships is tentatively assigned to each participant). This step produces two VAR(1) 

models (two 5-by-5 Φ matrices), which are then fitted to all participants in order to compute 

person-specific prediction errors. Each participant has two prediction errors from the two VAR 

models, which are evaluated to update the group membership of this participant. The participant 

is (re)assigned to the group where they had the minimum prediction error. This process is 

repeated for all participants, and the updated group membership is further used in the next 

optimization routine. The optimization routine is repeated until the group membership no longer 

changes. Because this procedure is easily trapped in a local minimum, it is recommended that 
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random initial group membership be used as well as the rational membership given by 

hierarchical clustering (Bulteel et al., 2016).  

The number of groups is determined by the CHull procedure (Ceulemans & Kiers, 2006; 

Wilderjans, Ceulemans, & Meers, 2013), which returns the number of groups that achieves the 

largest relative information gain when adding one extra group. The loss function (Lk), defined as 

a sum of prediction errors of k VAR models, is evaluated to search the maximum scree test ratio 

st: 

 
𝑠𝑡𝑘 =

𝐿𝑘−1 − 𝐿𝑘

𝐿𝑘 − 𝐿𝑘+1
 (5) 

The value of k that maximizes the st (i.e., adding another group does not improve the fit of the 

model) is regarded as the number of groups that best explains the data. In the current study, we 

evaluated k from 2 to 4, and tested whether the CHull procedure indicates k = 2 correctly for each 

run of simulations.  

Clustering by GGM. We first fitted a VAR(1) model to the simulated data for each 

participant, whose estimates (regression coefficients) were then used for GMM clustering. The 

VAR parameters were estimated by Ordinary Least Squares (OLS). The clustering was 

performed by the R package, mclust (Scrucca, Fop, Murphy, & Raftery, 2016), which considers 

variant mixture models with different distribution structure types, volumes, shapes, and 

orientations of the cluster ellipsoids. Therefore, the clusters could have variable geometric 

characteristics; e.g., a cluster can be wider and more tilted than the other clusters. The model 

parameterization as well as the number of clusters was selected using the Bayesian Information 

Criterion (BIC). In general, the BIC prefers a more parsimonious model with less complexity, 

e.g., smaller number of clusters (e.g., Vandekerckhove, Matzke, & Wagenmakers, 2019). 
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Results and Discussion 

Accuracy Predicting the Number of Groups. First, we evaluated the accuracy with 

which the ALS algorithm with CHull procedure suggests the number of groups when a VAR(1) 

model consists of five variables. Under the condition of moderately sized group differences, the 

algorithm suggested the correct number of groups at a probability of around 60% for all EF 

conditions (Table 1). Although the accuracy was not substantially improved for large group 

differences, it almost reached saturation between EF = 5 and 9 for very large group differences (5 

variables). The results for a VAR model with 10 variables showed a similar pattern; the accuracy 

was the highest for EF = 5 and 9 with very large size effects (76 and 90%, respectively). Overall 

the prediction accuracy is lower in the conditions with 10 than 5 variables. In the 10-variable 

condition, the accuracy reached 80% only when the data had 9 EFs with very large group 

differences. We repeated the same set of simulations for extra 100 runs (per condition), which 

replicated the similar pattern of the results (Table 1, values in parentheses). There seems to be an 

interaction between the number and size of EFs, both of which have to be high in order to find a 

good performance of the ALS algorithm. This, in turn, means that it is difficult for the ALS 

algorithm to identify the correct number of groups when the feature space has only one large size 

EF out of 25 or 100 regression coefficients. Such a small number of EF(s) would be easily buried 

among the other random non-effective features, which do not contribute to clustering. Also EFs 

with a smaller size group difference hardly contribute to the clustering, as the EFs were simulated 

to be a local subset of dimensions in the feature space.  

GMM failed to indicate the correct number of groups in almost all simulation conditions. 

The BIC typically preferred the most parsimonious model, suggesting only one group in the 

simulated sample. We explored the potential causes of this error in identifying the number of 

groups (see the supplementary materials for details). The first challenge of this approach is that 
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the individualistic estimates of VAR parameters contain some estimation errors. We found that 

the magnitude of the correlation between the simulated and estimated regression coefficients was 

typically only moderate (mean r = .55). The second challenge is that GMM is less sensitive to 

EFs that are local in the feature matrix. We performed further dimension reduction by factor 

analysis on the estimated individual regression coefficients. When the factor analysis identified a 

smaller number of factors (i.e., 25 regression coefficients were summarized into 1 or 2 factor 

scores), GMM achieved better accuracy identifying the number of groups and predicting 

participants’ group membership. However, the factor analysis often suggested 3 or more factors 

(note that the extra factors do not contain any useful information for clustering), which resulted in 

misspecification of the mixture model by the BIC. GMM was thus not evaluated in the following 

sections for parameter recovery and accuracy predicting group membership. 

Parameter Recovery. Root mean square errors (RMSEs) were computed for the 

estimated regression coefficients (with a greater value indicating a larger deviance from the true 

coefficients) only for the simulation runs where the correct number of groups was suggested. 

RMSEs were specified at the group level. For each simulation run, we first computed the group 

means of regression coefficients that were generated for each individual; second, we subtracted 

these group means of the simulated regression coefficients from those of the ALS estimation; 

third, these difference scores were root mean squared across regression coefficients within a 

group, so that a mean RMSE was obtained for each group in each simulation run. The mean 

RMSE ranged from 0.021 to 0.037, and was typically distributed below 0.05 for the simulations 

with five variables (Figure 1, Panel A). Given that the regression coefficients were generated 

from normal distributions with a fixed SD of 0.10, the precision of parameter estimation can be 
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regarded as good. Values of RMSEs were also small enough for the simulations with 10 

variables, with the means ranging from 0.022 to 0.030 (Figure 1, Panel B)
3
.  

 

- Figure 1 inserted here - 

 

Accuracy Predicting Group Membership. Classification accuracy (ACC), which is 

defined as (hits + correct rejections) / the total number of participants, was tested for each run of 

simulations. We computed the ACC (a) for all simulation runs and (b) only for runs where the 

correct number of groups was suggested. When the CHull procedure suggested an incorrect 

number of (i.e., three or more) groups, ACC was defined as the sum of participants who were 

assigned to the largest group in the true-control and true-target groups; e.g., if 30 (out of 50) true 

control participants were assigned to Group 1 and if 30 (out of 50) true target participants were 

assigned to Group 2, then the accuracy is 0.60; all participants assigned to Group 3 are regarded 

as incorrect predictions. 

Figure 2 shows the distributions of ACC for each condition of the simulations with five 

variables in a model. When moderate size group differences were assumed, ACC distributed 

around the chance level, with means of 0.48 – 0.49 and SDs of 0.09 – 0.10. With large and very 

large group differences, ACC increased as a function of the number of EFs. To achieve 80% 

accuracy, at least 5 cross-regression coefficients (out of 25) had to have very large differences 

between the two groups. This tendency was observed also for ACC computed only on the runs 

where the correct number of groups was indicated; that is, even when the algorithm determined 

                                                           
3
 RMSE was inversely related to the accuracy predicting participants’ group membership. This is because (a) we 

evaluated RMSE only when the correct number of groups was indicated; (b) even if the indicated number of groups 

was correct, the ALS algorithm could make a wrong prediction on participants’ group membership, particularly in 

the conditions of less EFs and smaller effect sizes. In this case, VAR models were specified on incorrect grouping, 

which resulted in increased RMSE. 
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the correct number of groups, the predicted membership was largely different from the true 

membership when the group differences were only moderate to large.  

 

- Figure 2 inserted here - 

 

In the simulations with 10 variables, the performance of the ALS algorithm was slightly 

lower than in those with 5 variables (Figure 3). The prediction accuracy was typically distributed 

between 0.40 and 0.60 under the conditions of moderate to large group differences. To achieve 

80% accuracy, at least nine EFs (our of 100 regression coefficients) with very large size group 

differences are needed. Again, this tendency was unchanged if ACC was computed on runs 

where the correct number of groups was indicated (Panel B).  

 

- Figure 3 inserted here - 

 

In summary, the ALS clustering showed good performance when there were sufficient 

group differences in the regression coefficients between two groups (i.e., 5 – 9 EFs with a very 

lager effect size). On the other hand, GMM clustering on the individual VAR estimates did not 

show an acceptable performance in any conditions. Therefore, GMM was not considered for 

further simulations and analyses in Studies 2 and 3. 

Study 2 

Study 1 examined the performance of the ALS algorithm under the assumption of two 

balanced groups. Study 2 explored the algorithm’s performance further by assuming unbalanced 

sample sizes between the target and control groups (Study 2a) or three groups (one control and 

two targets; Study 2b). We set up computer simulations parallel to Study 1, manipulating the 
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number of EFs, the effect sizes of the EFs, and the number of variables in the model, to determine 

whether the ALS algorithm could maintain performance comparable to that of Study 1, 

particularly under the conditions of 5 – 9 EFs with the very large effect size. 

Method 

Simulation data were generated for the same 2 × 3 × 3 conditions as in Study 1: the 

number of variables (5 or 10); effect sizes for group differences in EFs (Cohen’s d = 0.5, 1.0, and 

2.0); and number of EFs (1, 5, and 9 coefficients). The only differences were that we used a 

mixing rate of 30:70 for the control and target groups in Study 2a, and we assumed three groups 

in Study 2b. Study 2a used the same data generation process as Study 1. Individual Φ matrices 

were simulated by sampling (a) individual auto-regression coefficients from a group-level 

distribution of N(0.40, 0.01); (b) individual non-effective cross-regression coefficients from 

N(0.00, 0.01); and (c) individual effective cross-regression coefficients from N(0.05, 0.01), 

N(0.10, 0.01), and N(0.20, 0.01) for the moderate, large, and very large effect size conditions, 

respectively. 

In Study 2b, we generated data for 120 participants instead of 100, with N = 40 in each 

group. We assumed a control group whose cross-regression coefficients were sampled from 

N(0.00, 0.01), and two target groups with a variable number and size of effective cross-regression 

coefficients according to the simulation conditions. Group-level Φ matrices for the two target 

groups were created by randomly allocating EFs in their non-diagonal elements, with no overlap 

in EFs between the two target groups. Example group-level Φ matrices for the target groups are 

indicted below (under the condition of five variables, five EFs, and the very large effect size):  



VAR CLUSTERING  21 

 

 

𝚽𝑇𝐺=1 =

[
 
 
 
 
0.4 0.0 0.0 0.0 0.0
0.2 0.4 0.0 0.2 0.0
0.0 0.0 0.4 0.0 0.2
0.0 0.2 0.0 0.4 0.0
0.0 0.0 0.0 0.2 0.4]

 
 
 
 

 (5) 

 

𝚽𝑇𝐺=2 =

[
 
 
 
 
0.4 0.0 0.0 0.0 0.0
0.0 0.4 0.2 0.0 0.0
0.2 0.0 0.4 0.2 0.0
0.0 0.0 0.0 0.4 0.0
0.2 0.2 0.0 0.0 0.4]

 
 
 
 

 (6) 

For each simulated dataset, the ALS algorithm was applied with the same optimization and 

model selection (i.e., CHull) procedures as in Study 1. 

Performance evaluation in Studies 2a and 2b was the same as in Study 1 unless explicitly 

mentioned. In both Study 2a and Study 2b, accuracy was defined as the sum of participants who 

were correctly assigned to the control and target group. Because Study 2a had unbalanced control 

and target group sample sizes, we computed specificity and sensitivity as additional performance 

measures. Specificity was defined as the ratio of participants who were correctly identified as 

“target” relative to participants who were simulated to be in the target group; sensitivity was 

defined as the ratio of participants who were identified as “control” relative to participants who 

were simulated to be in the control group. 

In Study 2b, we found that the CHull procedure often suggested an incorrect number of 

groups (mostly two instead of three). In such cases, accuracy was the sum of participants who 

were assigned to the largest cell per identified group. For example, the ALS algorithm indicated 

two groups with the following characteristics: 

- Group 1: 20, 30, and 10 participants from the true Control, Target-1, and Target-2 groups, 

respectively 

- Group 2: 20, 10, 30 participants from the three groups, respectively. 
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In this example, accuracy was computed as (30 + 30) / 120 = 0.50. When the CHull procedure 

suggested more than three groups, accuracy was calculated from the largest three groups, and 

participants assigned to the smallest group were regarded as incorrect predictions. 

Results and Discussion 

Study 2a. The performance of the ALS algorithm was slightly lower when sample sizes 

were not balanced between the control and target groups. The algorithm indicated the correct 

number of groups in 60 – 70% of simulation runs and showed the best performance under the 

conditions of 9 EFs with the very large effect size (for both 5 and 10 variables). The accuracy of 

predicting participants’ group membership showed a parallel pattern (Figure 4). The ALS 

prediction achieved a mean accuracy of > 80% for EFs = 5 and 9 with the very large effect size in 

the 5-variable condition, and for EF = 9 with the very large effect size in the 10-variable 

condition. Because of the unbalanced sample sizes between the two groups, we also examined 

sensitivity and specificity (Table S3); both were the highest in the EF = 9 condition with the very 

large effect size (sensitivity = 0.93, specificity = 0.97 for 5 variables; sensitivity = 0.88, 

specificity = 0.77 for 10 variables). Mean RMSEs (in simulation runs where the correct number 

of groups was indicated) ranged from 0.024 – 0.038 across conditions, comparable to the results 

observed in Study 1. 

 

- Figure 4 inserted here - 

 

Study 2b. The ALS algorithm was less accurate in indicating the number of groups when 

three groups were included in the sample (Table 1). The CHull procedure erroneously indicated 

two groups as the best solution for 28 – 69 (and 50 – 88) simulation runs in the five- (and 10-) 

variable conditions with the very large effect size. Interestingly, even in these error cases, the two 
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target groups were well separated but the control group was typically split and absorbed into the 

two target groups. For example, the algorithm assigned the 40 participants from one target group 

to Group 1, the 40 participants from the other target group to Group 2, half of the 40 participants 

from the control group to Group 1, and the other half to Group 2. This is not surprising, because 

the control group is in between the two target groups in terms of the distance of Φ matrices. 

Therefore, regardless of its low performance in identifying the true number of groups, the ALS 

algorithm showed relatively good accuracy in predicting participants’ group membership. 

Accuracy was distributed around 80% in the condition of EF = 9 with the very large effect size 

(Figure 5). We did not analyze RMSEs because of the low accuracy of identifying the correct 

number of groups. 

 

- Figure 5 inserted here - 

 

 In summary, Study 2 showed that the ALS algorithm maintains acceptable performance in 

predicting participants’ group membership even when groups are not balanced (Study 2a) or there 

are three groups (Study 2b), if the groups have sufficient differences in Φ matrices. However, 

performance was lower than that of Study 1 overall, highlighted by the increased number of 

errors in indicating the number of groups when three groups were assumed. Critically, a group 

that is in between two other groups (i.e., the control group in Study 2b) is likely to be overlooked 

due to the conservativeness of the CHull procedure. 

Study 3 

We applied the ALS algorithm to a real ESM dataset in which participants made online 

reports of their current mood in daily life. Momentary mood ratings on five items were used for 
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the ALS clustering. We were particularly interested in how many features (regression 

coefficients) contributed to the clustering, and how large the features’ group differences were. 

Method 

Data. University students (N = 99) received 10 beeps per day for six consecutive days 

(part of the data have been published elsewhere: Iijima, Takano, & Tanno, 2017). The beep-to-

beep interval was approximately 90 min and was pseudo-randomized with a margin of ±15 min. 

In response to each beep, participants rated their current mood according to five items: tense, 

restless, uneasy, anxious, and nervous (from the tense-anxiety scale of the Profile of Mood State 

questionnaire; McNair, Lorr, & Droppleman, 1992). Each item was rated on a 5-point scale (0 = 

not at all, 4 = very much). We excluded the first responses of each day to keep the time interval 

more or less constant. Participants with fewer than 16 observations (N = 14) were not included in 

the clustering. The final dataset included 85 participants with 2,893 total observations; a median 

of 33 observations per participant (range: 16 – 57). All participants provided written informed 

consent and the study protocol was approved by the ethics committee of the University of Tokyo. 

Estimation. We first applied the ALS algorithm to cluster individuals on the basis of the 

VAR(1) model. All variables were person-mean centered to eliminate between-person variance. 

Second, to evaluate the size of group differences in the auto- and cross-regression coefficients,
4
 

we estimated univariate multilevel models where each mood rating at time t was predicted by (a) 

the lagged mood ratings at time t-1, (b) the ALS-assigned group memberships, and (c) their 

interactions (e.g., Pe et al., 2015). A within-person-level model was formulated as follows: 

 

𝑀𝑜𝑜𝑑𝑚𝑡𝑖 = 𝛽0𝑖 + ∑ 𝛽𝑚𝑖

𝑀

𝑚=1

𝑀𝑜𝑜𝑑𝑚(𝑡−1)𝑖 + 𝑟𝑖𝑡 (7) 

                                                           
4
 Note that the ALS algorithm does not provide variance estimates for regression coefficients (because it assumes no 

individual differences within a group). 
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where a rating on mood item m of participant i at time t (Mood1ti) was predicted by M mood 

ratings at time t-1 with an intercept, β0i, and residual, rit. The auto- and cross-regression 

coefficients, βmi, were allowed to vary across groups and individuals. Therefore, the between-

person-level models were given as follows: 

 𝛽𝑚𝑖 = 𝛾𝑚0 + 𝛾𝑚1𝐺𝑟𝑜𝑢𝑝𝑖 + 𝑢𝑚𝑖  (8) 

A group difference in a regression coefficient, γm1, was then standardized by the standard 

deviation of the corresponding random effect, umi, which is comparable to the effect sizes 

manipulated in Studies 1 and 2 (Feingold, 2009). The multilevel models were estimated using 

restricted maximum likelihood estimation, implemented in the lme4 R package (Bates, Maechler, 

Bolker, & Walker, 2015). 

Results and Discussion 

The CHull procedure suggested two groups as the best partitioning with st values of 2.38, 

1.43, and 1.34 for the two, three, and four groups, respectively. The algorithm allocated 58 

participants to Group 1 and the other 27 to Group 2. Overall, Group 2 was characterized by 

higher prospective effects of uneasiness than Group 1 on the other anxious feelings (Table 2). 

The matrices of the estimated regression coefficients met the stability assumption. When 

individuals in Group 2 felt uneasy at one moment, they tended to experience increases in tension, 

restlessness, anxiety, and nervous feelings at the next moment compared to those in Group 1; in 

other words, uneasiness appeared to be a precursor of more general and intense anxious feelings 

in Group 2. A potential issue that should be noted is that the variance components of several 

random effects were estimated to be (close to) zero. This suggests that the regression coefficients 

do not have random individual differences, and thus should be fixed within a group. In this case, 

the standardized effects of the group differences in the regression coefficients diverge to infinity 

because of the zero denominators. 
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The current real data analysis identified eight regression coefficients with large or very 

large group differences (greater than 1, Table 2). The group partitioning given by the ALS 

algorithm can be seen as reliable, as our simulations suggested good performance when 5 – 9 EFs 

had large or very large group differences (Study 1, Study 2a). Table 2 also illustrates the VAR 

parameter estimates for Group 1, indicating no substantial differences in the estimates between 

OLS regression embedded in the ALS routine vs. post-hoc multilevel modeling. The VAR 

parameters ranged from -0.10 to 0.37 (for Group 1), which are similar to coefficient magnitudes 

assumed in Studies 1 and 2. These results suggest that our simulation settings were realistic and 

appropriate in terms of the number and size of EFs and Φ matrices. 

General Discussion 

We evaluated the clustering algorithms in identifying unknown groups of participants 

who share the same or similar features in several coefficients of a VAR(1) model. Simulation 

data were generated by varying (a) the number of variables in the model, (b) the size of the group 

differences in the cross-regression coefficients (or effect size), and (c) the number of regression 

coefficients that code group differences (or effective features; EFs). The results of Study 1 

suggest that the accuracy of the ALS clustering is influenced by all three of these factors; more 

specifically, to achieve a sufficient clustering accuracy (> 80%), a VAR model has to have at 

least (a) five EFs with very large group differences (d = 2.0) in a 5-variable model; or (b) nine 

EFs with very large group differences in a 10-variable model. Even though the ALS algorithm 

assumes homogeneity in VAR parameters within a group, it showed overall good performance in 

data with a hierarchical structure (i.e., regression coefficients vary across individuals even within 

a group) when there are sufficient group differences in a subset of the coefficients.  

Similar results were found in less ideal conditions where we assumed unbalanced sample 

sizes between groups (Study 2a) and three groups in the sample (Study 2b). Although the 
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performance of the ALS algorithm was somewhat attenuated under these conditions (particularly 

for the model with 10 variables), the accuracy predicting individual group membership was 

acceptable when there were 5 – 9 EFs with the very large effect size. However, we found that the 

CHull procedure is somewhat too conservative to add an extra group as this procedure often 

missed the third group in the three-group condition (Study 2b). The missed group was typically 

in-between the other two groups in term of the Φ-matrix distance. Therefore, users of the ALS 

algorithm should be aware that it is still possible that there is another unidentified group even if 

the CHull procedure indicated the two groups as the best solution. 

Together with the ALS algorithm, we evaluated performance of GMM clustering based 

on the individual VAR estimates. This approach was, however, hardly able to find the correct 

number of groups as the BIC often indicated that there was only one group in the sample. As 

discussed in Study 1 (and in the supplementary file), GMM has mainly two challenges to 

overcome for improving the clustering performance. First, the individualistic estimation of the 

VAR(1) parameters has only a moderate precision, which inevitably affects the subsequent 

clustering performances. Second and more critically, GMM is not sensitive to a smaller number 

of EFs relative to the random features that do not contribute to the clustering. If external criteria 

(or teacher signals) are available, feature selection by supervised learning would improve the 

accuracy of the classification (Brodersen et al., 2014). Another possibility is to use a feature 

selection algorithm for GMM (Scrucca & Raftery, 2014) to find a locally optimal subset of 

features with group information in a dataset. Although we tried this algorithm in our simulations 

as well, it was computationally too demanding to obtain the results in a timely manner for our 

simulations.  

Feature selection is also relevant for the ALS algorithm, even though our simulation 

results suggest that the ALS is more sensitive to local EFs than GMM. Non-effective features add 
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random noise to the loss function that is evaluated in the ALS algorithm, which contaminates the 

optimization process and increases error in clustering. In an analysis of empirical data, it is 

advisable to select variables from researchers’ a priori knowledge about the clusters (e.g., to only 

include relevant variables that are expected to reflect hypothesized group differences) rather than 

to put all assessed variables into a model in a completely exploratory manner. One question that 

may come up at this point is whether the ALS algorithm can be used in an undefined variable 

space (i.e., when researches are not sure which variables or which coefficients are to be targeted 

for clustering). In an unsupervised-learning context, where the correct group labels are unknown, 

the goal of clustering is typically to find “interesting” groups of participants. Although the 

operational definition of “interesting” varies across contexts and goals of analyses, there are 

several statistical criteria (e.g., scatter separability and maximum likelihood criteria) that can be 

used to select meaningful (or effective) features for clustering (Dy & Brodley, 2004; Scrucca & 

Raftery, 2014). However, such an automatic feature selection does not necessarily lead to 

“better” clustering, as the selection criteria may not reflect researchers’ interests. In that sense, it 

would be important to rely on some external source of knowledge that can serve as a criterion of 

the goodness of clustering. Typically, psychopathology research aims to identify a group of 

people who are vulnerable to a particular disorder. In this context, the levels of the 

symptomatology or the diagnosis of the disorder could be used to evaluate the clustering 

outcomes. Furthermore, if the “correct” group labels (or external criteria) are known, supervised 

learning would help researchers to select effective features, i.e., to search for the best set of 

variables to predict the “correct” group membership. 

Related to this point, dimension reduction may also improve the performance of ALS 

clustering (Bulteel, Tuerlinckx, Brose, & Ceulemans, in press). The results of the current 

simulations show that clusters can be identified by a few coefficients in a VAR model. In turn, 
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this suggests that if a VAR model includes a number of EFs that represent the same 

psychological construct (which are typically highly correlated), these features may have too 

strong an influence on (or even bias) the clustering. A questionnaire often includes items that tap 

into the same psychological construct but have different wordings. If the ALS algorithm is 

applied to such items, the clustering outcomes may only reflect the single dimension of that 

psychological construct and would mask the other hidden groups that are potentially 

psychologically interesting.  

A critical limitation of the ALS algorithm is that it is not sensitive to moderately sized 

group differences in regression coefficients. Furthermore, with this effect size, the algorithm’s 

performance was not improved even when the number of EFs was increased. In other words, the 

ALS algorithm should be used when one can expect (very) large group differences in the VAR 

estimates. Bulteel et al. (2016) applied this algorithm to time series data on depression-related 

symptoms, and found quite large and consistent group differences in the explained variance for 

criterion variables. Similarly, our real data analysis (Study 3) identified large and very large 

group differences in eight regression coefficients with the five-variable model. As a post-hoc 

check, we fitted the multilevel models with the ALS-identified groups as a moderator. These 

models provided the estimates of (a) the group differences in each regression coefficient and (b) 

their SDs as variance components of the random effects. Users of the ALS can, thus, refer to the 

standardized group differences in order to see if their ALS-identified groups have sufficiently 

large group differences in a good number of regression coefficients. Our tentative suggestion is to 

regard 5 – 9 regression coefficients with large and very large size group differences as a threshold 

to find a stable clustering result, although this varies depending on the number of variables in a 

VAR model. If researchers found only moderate group differences after their ALS clustering, the 

predicted group membership should be interpreted carefully. In that case, a sensitivity analysis 
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(e.g., leaving out a participant or a feature regression coefficient, and performing the analysis on 

the remaining sample) would help researchers to know if their results are stable, and to identify 

which participants or which variables contribute to this instability.  

Our simulations have several limitations that should be taken into account when 

interpreting the results. First, we fixed the number of participants and occasions at 100 

participants with 50 responses per participant. We argue that it is not easy (though not 

impossible) to collect more than 50 complete responses per participant in an ESM study, but the 

performance of the ALS algorithm is generally more reliable the more responses that are 

available (Bulteel et al., 2016). Second, the current simulations are limited to a standard VAR(1) 

model, and thus the results could change for other models and analytic schemes. That said, the 

ALS algorithm would be applicable to many cases as it evaluates prediction errors, which can be 

defined regardless of the shapes of the models and estimators. One potential issue is that a VAR 

model typically assumes that the analyzed time series are stationary processes (i.e., means and 

regression coefficients are constant over time). If this assumption is violated, one could consider 

preprocessing the data, e.g., differencing, detrending, and deseasoning the time series. Another 

option is to use a model that allows coefficients to vary across time (e.g., Bringmann, Ferrer, 

Hamaker, Borsboom, & Tuerlinckx, 2018; Commandeur & Koopman, 2007), although such a 

model is more complex and needs more research to use with the ALS algorithm.  

Third, our evaluation for the accuracy predicting participants’ group membership may 

have been too conservative. We counted participants who were predicted to be in the third group 

as incorrect predictions in the two-group simulations (Studies 1 and 2a), but the third group could 

be seen as “correct” in some cases. For example, the third group can be similar to either the other 

two groups in term of the estimated Φ matrices; that means, the algorithm identifies Group A vs. 

B1 and B2 (Groups B1 and B2 are interpreted as subgroups of Group B). Although this 



VAR CLUSTERING  31 

 

interpretation would increase the accuracy levels, we did not implement this idea in our 

evaluation because (a) the number of groups that is indicated by the CHull procedure is not trivial 

information in a real data analysis; and (b) because we found that the third group was typically 

in-between the other two groups (cf. Study 2b) and it was not always apparent which group the 

third group should be counted in.  

In conclusion, the ALS algorithm reliably identifies subgroups of participants on the basis 

of a VAR(1) model when 10–20% of the regression coefficients in the model have very large 

group differences. Given that a set of non-effective features contaminates the ALS clustering, 

variable selection from a priori knowledge would be appropriate. In psychopathology research, 

levels of symptomatology and diagnosis of a target disorder would be good criteria for the 

variable selection as well as for validation of the clustering. 
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Table 1 

The Number of Simulation Runs Where the Number of Groups was Correctly Identified (Out of 100 

Runs) 

Study / Algorithm: ES 

conditions 

With 5 variables With 10 variables 

 EF =1 EF = 5 EF = 9 EF =1 EF = 5 EF = 9 

Study 1: two groups, balanced mixing rate 

  ALS: Moderate ES 62 (67) 50 (58) 62 (62) 60 (59) 64 (70) 79 (58) 

  ALS: Large ES 54 (64) 67 (59) 68 (70) 59 (65) 57 (68) 64 (61) 

  ALS: Very large ES 56 (46) 98 (96) 92 (98) 72 (59) 76 (74) 90 (89)  

  GMM: Moderate ES 0 0 0 0 0 0 

  GMM: Large ES 0 0 0 0 0 0 

  GMM: Very large ES 0 0 6 0 0 0 

Study 2a: two groups, unbalanced mixing rate 

  ALS: Moderate ES 50 54 66 63 65 68 

  ALS: Large ES 63 58 65 69 60 69 

  ALS: Very large ES 60 88 100 62 69 78 

Study 2b: three groups, balanced mixing rate 

  ALS: Moderate ES 28 19 24 27 19 15 

  ALS: Large ES 33 20 29 26 17 7 

  ALS: Very large ES 27 17 62 21 21 39 

Note. In Study 1, we repeated all the simulations in order to test the stability of the results. The 

performances of the ALS algorithm in the second runs are indicated in the parentheses. ALS = Alternating 

Least Square algorithm; GMM = Gaussian Mixture Modeling; EF = Effective Features; ES = Effect size. 
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Table 2 

Estimated Regression Coefficients and their Differences between the ALS-identified Groups 

  ALS (G1) Multilevel (G1) Group differences (G1 – G2) 

DV IV Estimates SE Estimates 

(γm0) 

SE Estimates 

(γm1) 

SD 

random 

effect 

(σumi) 

Standardized 

effect 

Tense Tense 0.19 0.05 0.17 0.05 -0.06 0.11 -0.51 

Tense Restless -0.01 0.04 0.00 0.05 0.05 0.11 0.44 

Tense Uneasy 0.13 0.04 0.16 0.04 -0.21 0.00 Inf 

Tense Anxious 0.13 0.04 0.13 0.05 -0.12 0.15 -0.78 

Tense Nervous 0.06 0.04 0.06 0.04 -0.03 0.11 -0.26 

Restless Tense 0.04 0.05 0.07 0.05 -0.02 0.11 -0.18 

Restless Restless 0.09 0.04 0.06 0.05 0.02 0.11 0.20 

Restless Uneasy 0.14 0.05 0.13 0.05 -0.21 0.07 -3.10 

Restless Anxious 0.14 0.05 0.16 0.05 -0.10 0.14 -0.75 

Restless Nervous 0.10 0.04 0.09 0.04 -0.06 0.04 -1.54 

Uneasy Tense -0.04 0.05 -0.01 0.05 0.08 0.09 0.83 

Uneasy Restless 0.03 0.05 0.02 0.05 -0.02 0.10 -0.17 

Uneasy Uneasy 0.38 0.05 0.37 0.04 -0.43 0.00 Inf 

Uneasy Anxious 0.09 0.05 0.10 0.05 -0.06 0.12 -0.54 

Uneasy Nervous 0.15 0.05 0.14 0.04 -0.02 0.06 -0.37 

Anxious Tense 0.15 0.05 0.12 0.04 -0.06 0.03 -1.73 

Anxious Restless -0.13 0.04 -0.10 0.05 0.15 0.12 1.29 

Anxious Uneasy 0.21 0.04 0.21 0.04 -0.28 0.05 -5.91 

Anxious Anxious 0.21 0.04 0.16 0.05 -0.06 0.12 -0.53 

Anxious Nervous 0.04 0.04 0.02 0.04 0.01 0.12 0.11 

Nervous Tense -0.04 0.05 -0.01 0.06 0.11 0.13 0.84 

Nervous Restless 0.02 0.05 0.01 0.05 -0.03 0.09 -0.37 

Nervous Uneasy 0.29 0.05 0.29 0.04 -0.34 0.02 -19.31 

Nervous Anxious 0.03 0.05 0.04 0.06 -0.09 0.17 -0.53 

Nervous Nervous 0.24 0.05 0.21 0.05 -0.09 0.11 -0.76 

Note. ALS (G1) = regression coefficients (and SEs) for Group 1 estimated by the ALS algorithm, in which 

a VAR(1) was fitted on each group by OLS; Multilevel (G1) = regression coefficients (and SEs) for 

Group 1 estimated by multilevel modeling; 
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A. 5 variables  

 

B. 10 variables  

 

Figure 1. Root mean square errors (RMSE) of estimated regressive coefficients as a function of 

number of effective features for variable effect sizes (Study 1). Each point indicates a mean 

RMSE across regression coefficients per group, per simulation run. Panel A: Simulations with 5 

variables in a model. Panel B: Simulations with 10 variables in a model. 
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A. All simulation runs 

 

B. Runs where the correct number of groups was indicated 

 

 

Figure 2. Classification accuracy (ACC) of the alternating least square algorithm for a vector 

autoregressive model with 5 variables (Study 1). Data were simulated with variable effect sizes 

and number of effective features in a model. Panel A: accuracy for all simulation runs. Panel B: 

accuracy for runs in which the correct number of groups was suggested. 
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 A. All simulation runs 

 

B. Runs where the correct number of groups was indicated 

 

Figure 3. Classification accuracy (ACC) of the alternating least square algorithm for a vector 

autoregressive model with 10 variables (Study 1). Data were simulated with variable effect sizes 

and number of effective features in a model. Panel A: accuracy for all simulation runs. Panel B: 

accuracy for runs in which the correct number of groups was suggested. 
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A. 5 variables 

 

 

B. 10 variables 

 

Figure 4. Classification accuracy (ACC) of the alternating least square algorithm when 

unbalanced sample sizes were assumed (Study 2a). All simulation runs are included. 
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A. 5 variables 

 

B. 10 variables 

 

 

Figure 5. Classification accuracy (ACC) of the alternating least square algorithm when three 

groups were assumed (Study 2b). All simulation runs are included.  
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