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Abstract

Sample correlations converge to the population value with increasing sample size, but the 

estimates are often inaccurate in small samples. In this report we use Monte-Carlo simulations 

to determine the critical sample size from which on the magnitude of a correlation can be 

expected to be stable. The necessary sample size to achieve stable estimates for correlations 

depends on the effect size, the width of the corridor of stability (i.e., a corridor around the true 

value where deviations are tolerated), and the requested confidence that the trajectory does 

not leave this corridor any more. Results indicate that in typical scenarios the sample size 

should approach 250 for stable estimates.

Keywords: correlation, accuracy, sample size, simulation

Highlights:

- Sample correlations converge to true value ρ, but are inaccurate in small samples

- From which sample size on do correlations only show minor fluctuations around ρ?

- Monte-Carlo simulations were used to determine the "point of stability" (POS)

- Necessary sample size depends on effect size, tolerable fluctuations, and confidence

- In typical scenarios n should approach 250 for stable estimates
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At what sample size do correlations stabilize?

1. Introduction

Most research in psychology seems to be concerned with the endeavor to determine the 

sign of an effect with some confidence, using the null hypothesis significance testing (NHST) 

procedure. Several authors, however, have argued that any field of science should move from 

binary decisions derived from the NHST procedure towards giving a more precise point 

estimate of the magnitude of an effect (Edwards & Berry, 2010; Kelley & Maxwell, 2003). 

Consider, for example, a correlation of r = .40 in a sample of 25 participants. This correlation 

is significantly different from zero (p = .047). Hence, it might be concluded with some 

confidence that there is "something > 0" in the population, and the study would be counted as 

a success from the NHST perspective. However, plausible values of the true correlation ρ, as 

expressed by a 90% confidence interval, range from .07 to .65. The estimate is quite 

unsatisfactory from an accuracy point of view – in any scenario beyond the NHST ritual it 

will make a huge difference whether the true correlation in the population is .07, which would 

be regarded as a very small effect  in most research contexts, or .65, which would be a very 

large effect in many contexts.  Moreover, precise point estimates are relevant for a priori 

sample size calculations. Given the huge uncertainty in the true magnitude of the effect, it is 

hard to determine the necessary sample size to replicate the effect (e.g., for an intended power 

of 80% and ρ = .07: n = 1599; ρ = .40: n = 46; ρ = .65: n = 16).

In this contribution we deal with a related question of practical importance in 

personality research: At which sample size does a correlation stabilize? Many researchers 

might have observed that the magnitude of a correlation is pretty unstable in small samples, as 

the following empirical example demonstrates. Multiple questionnaire scales have been 

administered in an open online study (Schönbrodt & Gerstenberg, 2012; Study 3). The thick 



STABILITY OF CORRELATIONS 4

black line in Figure 1 shows the evolution of the correlation between two scales, namely 

“hope of power” and “fear of losing control” when after each new participant the correlation 

is recalculated. It can be seen that the correlation evolved from r = .69 (n = 20, p < .001) to r 

= .26 (n = 274, p < .001). From a visual inspection, the trajectory did not stabilize up to a 

sample size of around 150. Data have not been rearranged – it is simply the order how 

participants dropped into the study. Some other correlations in this data set evolved from 

significantly negative to non-significant, others changed from one significant direction into 

the significant opposite, and some correlations were stable right from the beginning with only 

few fluctuations around the final estimate. But how do we get to know when a correlation 

estimate is sufficiently stable?  

Figure 1: Actual (thick black line) and bootstrapped (thin gray lines) trajectories of a correlation. The dotted 

curved lines show the 95% confidence interval for the final correlation of r = .26 at each n. Dashed lines show 

the ± .1 corridor of stability (COS) around the final correlation. The point of stability (POS) is at n = 161. After 

that sample size the actual trajectory does not leave the COS.
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2. Definition and Operationalization of Stability

Suppose a true correlation of ρ = .40. When the estimate in the sample is .41 or .38, 

most researchers would agree that this is a rather trivial deviation from the true value. A 

stronger deviation like .26 or .57 could be deemed more problematic, depending on the 

research setting. And even stronger deviations like .10 or .65 (which would still be within the 

95% CI at n = 25) probably would be judged unacceptable from a substantial point of view.

When talking about stability, minor fluctuations around the true value can be tolerated, 

but not large deviations. Hence, a corridor of stability (COS) around the true value can be 

defined, where all deviations within that corridor are classified as being acceptable. As the 

confidence interval around correlations partly depends on the magnitude of the correlation, 

the corridor is defined in units of q, an effect size measure for correlations that only depends 

on sample size (Cohen, 1988). For that purpose, ρ is Fisher-r-to-Z-transformed and the desired 

width of the corridor, w, is both subtracted from and added to that value. Therefore, w denotes 

the half-width of the COS. These upper and lower boundaries then are back-transformed to a 

correlation metric. The desired width of the corridor depends on the specific research context 

(see Figure 1 for a COS with w = .10). In this paper, three widths are used: ± .10, ± .15, and 

± .20. Following the rules of thumb proposed by Cohen (1992), a value of .10 for w 

corresponds to a small effect size. Hence, if the sample correlation r stays within a corridor 

with w = ± .10, the resulting deviations only have a small effect size. The half-width of a 

corridor is denoted in the subscript of COS. As an example, for ρ = .40 the COS.10 is [.313; .

481], COS.15  is [.267; .518], and COS.20 is [.220; .554].

With increasing sample size the sample correlation approaches the true value with a 

continuously decreasing confidence interval (see Figure 1). The point of stability (POS) is 

defined as that sample size from which value on the trajectory of the correlation does not 

leave the COS any more. For sample sizes with n > POS, the estimate only shows tolerable 
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fluctuations around the true value.

To assess the variability of possible trajectories, bootstrap samples of the final sample 

size can be drawn from the original raw data, and the evolutions of correlation for the new 

data sets are calculated. Figure 1 shows some exemplary bootstrapped trajectories. It can be 

seen that some trajectories start well above the final value (as the original trajectory), some 

start even with a significant negative value, and some start already within the COS without 

ever leaving it. With increasing sample size, all trajectories converge into the COS. Each of 

these trajectories has its own POS, and if several thousand bootstrap trajectories are sampled 

a distribution of POS can be obtained. Computing percentiles of this distribution allows 

pinpointing the critical POS, POScrit, from which value on at least, for example, 80% of all 

trajectories do not leave the COS any more. Henceforward, these percentiles are called the 

confidence in the stability.

With these definitions, the answer to the research question can be formulated more 

precisely: We are interested in the critical sample size POScrit, from which value on the 

estimate of a correlation does not leave the COSw with a confidence of 80% (90%, 95%).

3. Method and Results

To compute a distribution of POS values, Monte-Carlo simulations have been run in the 

R environment for statistical computing (R Development Core Team, 2012). The complete 

source code for the computations can be downloaded from the online supplementary material. 

The following steps have been performed for the simulation:

• Simulate a bivariate Gaussian distribution with 1'000'000 cases and a specified 

correlation ρ (the "population").
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• Draw B = 100'000 bootstrap samples1 with nmax = 1000 cases from this population

• For each bootstrap sample calculate the correlation for every sample size n, starting 

from nmin = 20 up to nmax = 1000, with a step size of 1 ("trajectory of the correlation").

• Calculate the POS for each bootstrapped trajectory. For that purpose trace back the 

trajectory from nmax (99.98 % of all trajectories terminated within the COS at n = 1000) 

until it breaks the COS for the first time. The sample size of this break is recorded as 

the POS for this trajectory.

Seven different correlations were used for the populations (ρs = .1, .2, .3, .4, .5, .6, and .

7), and three different half-widths of the COS (w = .10, .15, and .20). Correlations were 

imposed using a method proposed by Ruscio and Kaczetow (2008). As a result of this 

procedure, a sample of 100'000 POS values was obtained for each ρ and each COS width. 

Subsequently, three percentiles of these POS distributions were calculated: 80%, 90%, and 

95%.

Table 1 shows POScrit for each experimental condition. Not surprisingly, all other things 

being equal, the required sample size increases with smaller w and larger confidence. 

Furthermore, larger correlations stabilize earlier.

1 100'000 bootstrap samples might seem an unusually high number. We ran so many replications because the 

estimation of extreme quantiles is less accurate than that of quantiles near the median, in particular for long-

tailed distributions (Wilcox, 2005). Hence, a large number of bootstrap replications is needed to obtain accurate 

estimates for the 95% confidence condition and low ρs. For example, in the current simulation the width of the 

95% CI of the 95th quantile (w = .1, ρ = .1) is 99 for B = 1000, 27 for B = 10'000, and 10 for B = 100'000.
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Critical point of stability (POScrit): Level of confidence

80% 90% 95%

ρ w = .10 w = .15 w = .20 w = .10 w = .15 w = .20 w = .10 w = .15 w = .20

.1 252 110 61 362 158 88 470 209 116

.2 238 104 57 341 150 83 446 197 109

.3 212 93 51 304 134 75 403 177 99

.4 181 78 43 260 114 63 342 152 84

.5 143 62 34 208 90 50 275 121 68

.6 104 45 25 150 66 37 202 89 51

.7 65 28 20 96 42 24 129 58 35

Table 1: The critical points of stability (POScrit) for different widths (w) of the corridor of stability (COS), 

different levels of confidence, and different ρs.

To explore the robustness of these results, two ancillary analyses were performed. First, 

the conditions for a break were made harder by requiring that the trajectory has to leave the 

COS for two or three consecutive instances to qualify for a break (i.e., if only for a single 

sample size the trajectory is outside the COS, but several sample sizes before and after that 

point are within, this would not be classified as a break). For two consecutive breaks, the POS

was reduced on average by 3 cases (maximum: 8 cases), for three consecutive breaks on 

average by 6 cases (maximum: 13). These reductions are rather negligible in comparison to 

the overall magnitude of the typical POS.

Second, we explored the impact of non-normal distributions with skewness, heavy tails, 

and outliers. In an analysis of 440 large-scale real world data sets in psychology only 4.3% 

could be considered as reasonable approximations to a Gaussian normal distribution (Micceri, 

1989). Hence, deviations from normality are rather the rule than the exception in psychology. 
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To explore the impact of these deviations on the POScrit values, we used four real world data 

sets provided by T. Micceri2 as marginal distributions and imposed the specified population 

correlations (Ruscio & Kaczetow, 2008). We constrained our analysis to typical non-normal 

distributions found in psychology (i.e., some skewness and somewhat heavier tails)3.  Results 

for these variables were comparable to the Gaussian simulated data set. In non-normal 

distributions the POS had a median increase of 1.7% compared to the normal case (i.e., on 

average the correlations stabilized slightly later), and 90% of the differences between the non-

normal and normal POS were smaller than 6%.

4. Discussion

It has been argued that for a cumulative growth of knowledge accurate estimates of the 

magnitude of an effect would be more fruitful than simple binary decision derived from 

NHST. Previous approaches concerned with the accuracy of estimates focused on confidence 

intervals around the point estimates. By defining the aspired level of accuracy one can 

compute the necessary sample size (Algina & Olejnik, 2003; Maxwell, Kelley, & Rausch, 

2008).

The current report extends this literature by applying a sequential sampling perspective, 

and answers the question: How many participants do we have to sample to be confident that 

the correlation has stabilized within a reasonable corridor? The answer, reported in Table 1, 

depends on the size of the true correlation, the accuracy that is requested, and the confidence 

that the researcher wants to have in the decision. Precise and stable estimates within a corridor 

of +/- .05 need large samples beyond n = 1000, as has been noted before (Hunter & Schmidt, 

2 The data sets can be downloaded from http://www.freewebs.com/tedstats/Files/Real_Data.zip. In our analysis 

we included all pairwise combinations from four variables (ACT_composite, GRE_quantitative, GRE_verbal, 

and Cumulative_GPA).

3 We did not explore the effect of extreme deviations from normality, which could be expected to have more 

impact on the results under some special conditions.
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2004; Maxwell et al., 2008). But this level of precision can only be achieved by a relatively 

small number of high-budget studies. In practice, most research is done with budget and 

logistical constraints and therefore a sensible pragmatic question is when we can consider an 

estimate of a correlation coefficient reasonably stable. 

If Table 1 should be boiled down to simple answers, one can ask what effect size 

typically can be expected in personality. In a meta-meta-analysis summarizing 322 meta-

analyses with more than 25'000 published studies in the field of personality and social 

psychology, Richard, Bond, and Stokes-Zoota (2003) report that the average published effect 

is r = .21, less than 25% of all meta-analytic effects sizes are greater than .30, and only 5.28% 

of all effects are greater than .50. Hence, without any specific prior knowledge it would be 

sensible to assume an effect size of .214. Further let's assume that a confidence level of 80% is 

requested (a level that is typically used for statistical power analyses), and only small effect 

sizes (w < .10) are considered as acceptable fluctuations. By applying these values on Table 1 

the required sample size is around n = 238. Of course, what is a meaningful or expected 

correlation can vary depending on the research context and questions. In some research 

contexts even small correlations of .10 might be meaningful and with consequential 

implications. In this case, larger samples are needed for stable correlations.  In other research 

contexts the expected correlation can be greater (e.g., convergent validity between different 

measures of the same trait) or the researcher is willing to accept a slightly less stable estimate, 

perhaps compensating with an increased level of confidence. This would reduce the necessary 

sample size. But even under these conditions there are few occasions in which it may be 

justifiable to go below n = 150 and for typical research scenarios reasonable trade-offs 

between accuracy and confidence start to be achieved when n approaches 250.

4 As a reviewer pointed out, meta-analyses tend to overestimate the effect size as only published studies are 

incorporated into the analysis. Hence, a cautious researcher might even lower the expectation.
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