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Abstract: The study investigated the validation of a rating scale to measure cognitive load in science teacher education. The rating scale was
used to measure three types of cognitive load in a new learning context with 81 undergraduate students enrolled in a science education
program, randomly assigned to three experimental groups: problem-solving, example-based learning, and control groups. The preservice
teachers’ cognitive load was measured using a rating scale during an intervention to diagnose students’ misconceptions in physics. The study
also assessed the effect of instructional design on cognitive load. The results showed that the three types of cognitive load can be reliably
measured in science teacher education and that instructional designs that create germane cognitive load contribute to the development of
preservice teachers’ diagnostic competencies. Conversely, designs that create irrelevant cognitive load are detrimental to this development.
These findings suggest the importance of considering cognitive load in science teacher education for effective instructional design.
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Cognitive load theory (Sweller, 1988, 1994, 2011) is a
theory of learning and teaching that derives instructional
design implications from a model of human cognitive
architecture. It suggests general instructional design
principles for managing working memory load as a key
issue for successful learning and performance (Ginns &
Leppink, 2019; Kalyuga, 2011). Thus, it is important to
understand the degree of cognitive load imposed by a
particular instructional design to use it most effectively.
Unfortunately, instead of a universal method for mea-
suring cognitive load that is appropriate for different
learning contexts or audiences, there is a wide variety of
assessment approaches. Subjective rating scales are par-
ticularly common (Thees et al., 2021). In this study, we
investigated the validity of one of the most commonly used
rating scales for assessing cognitive load (Leppink et al.,
2013) on a sample of Tanzanian Bachelor of Science in
Education students during an intervention aimed at as-
sessing students’ misconceptions in physics. While the
application of this assessment scale in science, technology,
engineering, and mathematics laboratory courses is well-
established (e.g., Altmeyer et al., 2021; Morrison et al.,

Psychological Test Adaptation and Development (2023), 4, 246-256
https://doi.org/10.1027/2698-1866/a000052

2015; Thees et al., 2021), these studies focused on either
students or teachers, but not on student teachers (pre-
service teachers). Furthermore, in the studies by Leppink
et al. (2013), where the rating scale was first developed and
further validated in Leppink et al. (2014), the learning
context was in Europe, while the participants came from
health sciences, psychology, or language courses. Thus,
this study adds to the existing literature on cognitive load
theory by testing its applicability to this relatively under-
studied learning context (i.e., preservice teachers learning
to diagnose student misconceptions in physics) in a non-
WEIRD sample (Henrich et al., 2010). Therefore, the aim
of the present study was to validate one of the most
commonly used rating scales (Leppink et al., 2014) to
assess cognitive load in a different learning context with
preservice physics teachers and to investigate whether the
rating scale could replicate the triarchic factor structure
and the expected effects of instructional design on cog-
nitive load in the context of science teacher education
(Schmeck et al., 2015). Although there is ample evidence to
support the validity of the instructional implications of
cognitive load theory (Syring et al., 2015), there has been
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no systematic investigation of the validity of the theory for
facilitating knowledge and skills in science teacher edu-
cation while assessing their cognitive load.

What Is the Construct Being Measured?

Research on cognition suggests that new or novel infor-
mation must be processed in working memory before it
can be stored in long-term memory (Chen et al., 2018;
Paas et al., 2003; Van Merriénboer & Sweller, 2010).
Working memory itself is limited in terms of both the
amount of information it can process and the time it takes
to process it. Therefore, any learning activity that results in
exceeding the capacity of working memory will always
result in the learner experiencing a higher subjective
cognitive load (Sweller et al., 1998). According to Paas
et al. (1994), the term cognitive load refers to a multidi-
mensional construct that represents the amount of load
that learners would experience in their cognitive systems
while performing specific learning tasks. Measuring cog-
nitive load can help optimize learning and improve in-
structional design by providing valuable information about
learners’ cognitive demands and limitations. However, if
unnecessary cognitive load due to inappropriate instruc-
tional procedures or interactivity of elements in learning
materials is not well-managed, it can overwhelm the
available cognitive capacities of preservice teachers (Moos
& Pitton, 2014).

Cognitive load theory originally defined two types of
cognitive load: intrinsic cognitive load, which represents
the cognitive load caused by the intrinsic nature of the
learning materials (i.e., the inherent difficulty of the task;
Chandler & Sweller, 1991), and extraneous cognitive load,
which represents information introduced into instructional
designs that is not directly needed to master a given
problem (Sweller et al., 1998). Later, germane cognitive
load was introduced as a third category of cognitive load
(Leppink, et al., 2014; Sweller et al., 1998). Germane
cognitive load is generated by learning activities that
support the further development of knowledge structures
in long-term memory, such as the application of a learning
strategy (Van Merriénboer & Sweller, 2005). The addi-
tivity hypothesis (Moreno & Park, 2010) states that in-
trinsic, extrinsic, and germane cognitive load contribute to
total cognitive load, but only if the capacity of working
memory is not exceeded. Intrinsic and extrinsic cognitive
load are associated with different aspects of the learning
material and are therefore assumed to be uncorrelated. On
the other hand, intrinsic and germane cognitive load are
assumed to share a common theoretical background and
should be interdependent. Extraneous and germane
cognitive load should not be correlated due to their
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different nature, with germane cognitive load being an
active process and extraneous cognitive load being a
passive process. In a recent meta-analysis, Krieglstein et al.
(2022) report that this triarchic theory of cognitive load
(see DeLeeuw & Mayer, 2008, for more details) has been
replicated across studies and across rating scales. Ac-
cording to this meta-analysis, reliability estimates of
cognitive load rating scales were not affected by educa-
tional setting, domain of instructional material, mode of
presentation, or number of rating scale points. While
correlations between cognitive load types were partially
inconsistent with theory-based assumptions, correlations
with learning-related variables supported assumptions
derived from cognitive load theory. Based on these find-
ings, we do not expect to find substantial effects of
adapting the rating scale to our context.

However, learners differ in terms of their individual
learning characteristics and the cognitive load they ex-
perience in a task. The main factor that determines the
amount of cognitive load that learners experience is prior
knowledge (Kalyuga, 2009). With increasingly effective
knowledge structures in long-term memory, the infor-
mation presented in a learning situation can be structured,
reducing the demand on working memory (Sweller et al.,
1998). Correspondingly, the cognitive load of a given
problem or task decreases as the amount of available prior
knowledge relevant to the task increases. Adequate
measurement of the specific cognitive load experienced by
learners on a given task allows for optimization of the
instructional design provided (Chandler & Sweller, 1991;
Chen et al., 2018). For example, problem-based learning
may impose a higher cognitive load than learning through
example-based instruction because learners must direct
some of their mental effort to managing the problem-
solving process (e.g., dealing with problem states while
relating the required solutions) during the learning process
(Sweller et al., 1998). If the goal of the learning task is to
acquire knowledge about concepts, while learners have
experienced cognitive load due to the use of inappropriate
instructional support, then this can be considered extra-
neous cognitive load. It is also possible for learners to
experience high extraneous cognitive load when they
encounter learning tasks that require them to solve
structured problems that integrate many elements at once
(e.g., text and diagrams; Sweller et al., 1998). This is be-
cause learners would use much of their mental effort to
process multiple pieces of information, thereby increasing
extraneous cognitive load (Paas et al., 1994). Similarly, if
learning materials contain redundant information,
learners would spend much of their mental effort on
unnecessary information, thereby increasing their extra-
neous load (Paas et al., 1994; Sweller et al., 1998). In
contrast to problem-solving, worked examples can reduce
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extraneous cognitive load because there is no need to
manage the problem-solving process, allowing learners to
generalize solutions and focus attention on the current
problem state and goals (Bichler et al., 2020; Sweller et al.,
1998). The literature on cognitive load shows that worked
examples are useful for learning new skills (Hoogerheide
& Roelle, 2020), and especially for the acquisition of new
knowledge, learners can learn best with examples before
they can actually learn by solving problems (Jalani & Sern,
2015; van Harsel et al., 2020). However, according to the
expertise reversal effect (Kalyuga et al., 2003), worked
examples may become redundant when used with more
expert learners. That is, as learners become experts in a
particular learning experience, they may no longer need
worked examples because they can already solve problems
by applying their knowledge. In terms of learner charac-
teristics, a recent meta-analysis (Chernikova et al., 2020)
found that less advanced learners may benefit more from
scaffolded instructional support with high levels of guid-
ance (examples) than more advanced learners for whom
self-regulation (problem-solving) is the best instructional
strategy (cf. Chernikova et al., 2020). The use of problem-
solving and example-based instructional strategies may
have implications for cognitive load, while at the same
time, learners’ prior knowledge is a key factor in designing
the best instructional strategy.

In addition to cognitive load, we assessed preservice
teachers’ diagnostic competence in terms of conceptual and
procedural knowledge, which refers to knowledge of con-
cepts and procedures. In teacher education, however, di-
agnostic competence has been defined as the ability of
teachers to identify students’ learning prerequisites (Barth
& Henninger, 2012), students’ performance, or teachers’
own characteristics (Vogt & Rogalla, 2009). In science
education, especially in physics, it is crucial for preservice
teachers to learn how to diagnose students’ misconceptions.

What Are the Intended Uses?

Leppink et al. (2013) developed a psychometric rating
scale to measure different types of cognitive load, which
should be able to distinguish between different types of
cognitive load in different educational contexts. To vali-
date this scale in science teacher education, we investi-
gated three related research questions. First, we tested
whether the triarchic model of intrinsic, extrinsic, and
germane load could be replicated in a novel learning
environment and sample.

Research Question 1: Does the theoretical model of

three distinct facets of cognitive load fit the data in a
novel learning environment and sample?
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Once a measurement model for cognitive load could be
established, we investigated whether different instruc-
tional designs would have the theoretically expected ef-
fects on the extracted facets of cognitive load. Only then
could we be sure that the scale was measuring the same
constructs as theoretically described. One experimental
group was trained to assess students’ misconceptions in an
intervention with an instructional design based on
problem-solving, while the second experimental group was
assigned to an intervention with an instructional design
based on example-based instructional support. The pre-
service teachers in the control group did not receive any
training on how to diagnose students’ misconceptions in
physics. However, the control group would serve as a
reference point because they had not interacted with the
instructional design intended for an intervention and thus
would serve as a baseline for comparing the two experi-
mental groups based on the two forms of instructional
strategies in learning how to diagnose physics miscon-
ceptions. We expected to observe systematic differences
between the three groups on all three facets of cognitive
load. We formulated three different hypotheses for this
research question.

Hypothesis 1: Experimental conditions vary in
intrinsic cognitive load with the problem-solving
group experiencing the highest load, followed by
the worked example group and then finally by the
control group.

Hypothesis 2: Experimental conditions vary in ex-
trinsic load with the problem-solving group experi-
encing the highest load, followed by the worked
example group and then finally by the control group.

Hypothesis 3: Experimental conditions vary in ger-
mane load with the worked example group experi-
encing the highest load and then followed by
problem-solving group experiencing.

Research Question 2: Does the effect of instructional
design on measured cognitive load align with theo-
retical assumptions?

During the learning phase, preservice teachers could ex-
perience different levels of cognitive load depending on
the instructional design and elements interactivity of the
learning materials (Kalyuga, 2011; Sweller et al., 1998).
Higher extraneous load could be experienced due to im-
proper instructional design, while high intrinsic load could
be experienced due to elements interactivity of the
learning materials. Therefore, we expected to find dif-
ferences in the cognitive load experienced by preservice
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teachers based on the instructional design and the nature
of the learning materials.

Hypothesis 4: Problem-solving instruction procedure
exerts higher extraneous cognitive load followed by
example-based learning instruction.

Finally, we postulated that cognitive load that preservice
teachers would experience during the intervention could
influence the diagnostic competence as a result of in-
structional manipulation.

Research Question 3: What is the effect of instructional
design on diagnostic competence while controlling
cognitive load (all three facets)?

Hypothesis 4: The impact of experimental condition on
increases in conceptual knowledge is reduced by
controlling for cognitive load (all three facets).

Hypothesis 5: The impact of experimental condition on

increases in procedural knowledge is reduced by
controlling for cognitive load (all three facets).

Methods

Participants

Eighty-one undergraduate students pursuing a Bachelor of
Science in Education with a concentration in physics par-
ticipated in the study. The mean age of these preservice
teachers was 25.09 years (SD = 2.04), with a minimum age
of 22 years and a maximum age of 35 years. Of these, 86.4%
were men and 13.6% were women. The sample size was
calculated based on the statistical power associated with
testing multiple hypotheses. In our study, we were inter-
ested in detecting a medium effect size of the intervention
(Cohen’s d = 0.35; a level of .05 and study power of up to
.95), if any, compared to the treatments of the variables.
Using G*Power statistical software, we were able to obtain
an estimate of 69 participants for the repeated-measures
MANOVA and study design. Therefore, the current sample
(N = 81) of available preservice teachers was sufficient to
detect the required effect size.

The sample was drawn from one of the constituent col-
leges of education at the University of Dar es Salaam in
Tanzania. Research permission was obtained from the vice
chancellor of the University of Dar es Salaam before the
intervention was implemented. All preservice teachers
voluntarily participated in the study as part of a regular
course. Participants were aware that they could end their
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participation at any time without giving a reason and that the
data would be anonymized. They were asked to sign a
consent form. After an intervention, preservice teachers
were reimbursed a small amount of money (US$ 10) to cover
their travel expenses and meals during the workshop day.

Design

The study used an experimental research design with three
independent groups. The preservice teachers were ran-
domly assigned to two experimental groups and one control
group. One experimental group (n = 27) was trained to assess
students’ misconceptions in physics through an intervention
with an instructional design based on problem-solving, while
the second experimental group (n = 28) was assigned to an
intervention with an instructional design based on example-
based instructional support. The preservice teachers in the
control group (n = 26) did not receive any training on how to
diagnose students’ physics misconceptions. They were
asked to wait for the training later after the two experimental
groups had completed the given tasks. However, they
participated in the pretest (prior diagnostic knowledge),
post-test (diagnostic knowledge gain), and cognitive load
measures just like the experimental groups.

Procedure

Preservice teachers were trained during a 1-day intensive
training workshop; the intervention targeted preservice
teachers’ competence in assessing students’ misconceptions
in physics (Timothy et al., 2023). The preservice teachers
learned how to diagnose students’ misconceptions in me-
chanics in the first session and in electricity in the second
session. The first training session lasted 2 h and 30 min,
while the second training session lasted 2 h. The preservice
teachers’ prior diagnostic knowledge was assessed for ap-
proximately one hour prior to the training sessions. Cognitive
load was measured twice: between the two training sessions
and after the second training session. We assessed cognitive
load by asking participants to complete a rating scale
(adapted from the second study by Leppink et al., 2014) for
approximately 10 to 15 min. The preservice teachers’ gain in
diagnostic knowledge was assessed using the same stan-
dardized test within one hour after the second training phase.

Instruments
We measured cognitive load using a modified version of a

rating scale adopted from Leppink et al. (2014) in their
second study. Leppink and colleagues conducted two
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studies: The first study aimed to investigate whether the
psychometric instrument they developed could differen-
tiate between three types of cognitive load, while the
second study used a slightly modified version of the in-
strument to differentiate between intrinsic load and ex-
trinsic load. The modified version of a rating scale in the
second study consisted of 13 items, with four items
measuring intrinsic load, four items measuring extraneous
load, and five items measuring germane load. The pre-
service teachers responded to each item using a 10-point
Likert scale (see Table 1). Cognitive load was assessed in
the middle and at the end of the intervention phase. A
mean score was calculated for each type of cognitive load
(intrinsic, extrinsic, and germane) per participant. The
internal consistency was good for intrinsic cognitive load
(a = .74), satisfactory for extraneous cognitive load (a =
.69), and excellent for germane cognitive load (a = .91).
Table 1 shows the scale used to measure the cognitive load
that preservice teachers would experience during the
process of learning how to diagnose physics misconcep-
tions. However, the rating scale was used to assess cog-
nitive load in its well-established English version without
further adaptation. English was used in this rating scale
because it is the language of instruction in higher edu-
cation institutions in Tanzania.

Table 1. A rating scale to measure three types of cognitive load

Diagnostic Competence

The diagnostic competence of preservice teachers was
assessed using an objective test that is well-described in
the recently published article (Timothy et al., 2023). The
test was piloted with a similar sample of preservice
teachers from another constituent university college of
education. The test consisted of two sections (scales): the
first section of 32 multiple-choice items measuring con-
ceptual diagnostic knowledge and a second section of 14
items measuring procedural diagnostic knowledge. A
section measuring conceptual diagnostic knowledge
consisted of items derived from similar diagnostic cases
used in the learning phase of an intervention. An item in
the first section of this knowledge test was worth either one
point or zero depending on whether a preservice teacher
chose a correct or incorrect answer. Some items were later
removed during scale construction to increase the internal
consistency of the instrument. The overall internal con-
sistency of all items in the first scale was o = .72, but the
reliability analysis suggested that if certain items were
removed, the internal consistency would increase to a =
.74, a value close to the recommended value of a = .75
(Field, 2013). Next, a total of nine items were progressively
removed from the first scale to increase its internal con-
sistency to at least the recommended value for objective

Number [tem

Response

0 1 2 3 4 5 6 7 8 9 10

-

The content of this activity was very complex.

The problem/s covered in this activity was/were very complex.
In this activity, very complex terms were mentioned.
I invested a very high mental effort in the complexity of this activity.

The explanations and instructions in this activity were very unclear.

o o~ W N

The explanations and instructions in this activity were full of unclear
language.

7 The explanations and instructions in this activity were, in terms of
learning, very ineffective.

8 I invested a very high mental effort in unclear and ineffective
explanations and instructions in this activity.

9 This activity really enhanced my understanding of the content that was
covered.

10 This activity really enhanced my understanding of the problem/s that
was/were covered.

M This activity really enhanced my knowledge of the terms that were
mentioned.

12 This activity really enhanced my knowledge and understanding of how
to deal with the problem/s covered

13 I invested a very high mental effort during this activity in enhancing my
knowledge and understanding

Note. Item categories: intrinsic load (1-4), extraneous load (5-8), and germane load (9-13). Scale: 0 = not at all, 10 = completely the case.
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measures. The final score was o = .81. For the second scale,
which was used to measure procedural knowledge, the
overall internal consistency was o = .68, while the reli-
ability analysis suggested that the value would never be
higher than .68 if any items were removed from the scale.
Although this value was lower than the recommended
value of a = .75, we decided to retain all 15 items to assess
procedural diagnostic knowledge.

Data Processing and Analyses

We applied confirmatory factor analysis using the lavaan
package (Rosseel, 2012) in R 4.0.3. The aim was to test
whether a theoretical model about the rating scale de-
veloped by Leppink and colleagues to measure the three
forms of cognitive load could still hold in another learning
context of teacher education in physics (RQ1). The model
with three correlated factors was tested for both measures.
In addition, we tested for measurement invariance across
time points. All models were estimated using diagonal
weighted least squares. Model fit was considered ac-
ceptable with a comparative fit index (CFI) > .95 and a
root-mean-square error of approximation (RMSEA) < .05.
A decrease in CFI of less than .01 was considered ac-
ceptable to assume invariance (Cheung & Rensvold,
2002). If strong invariance could be assumed, we could
average both measures for all further analyses to increase
the reliability of our measures.

To analyze the main effect of instructional design on
cognitive load (RQ2), we conducted a MANOVA with
ANOVAs and Tukey-corrected post hoc tests to test for
significant effects. To analyze the effect of instructional
design on diagnostic competence (RQ3), we calculated
knowledge gain scores (post-test-pretest) for both facets
of diagnostic competence. Based on these scores, we
performed MANOVAs to test the hypotheses without

covariates (H4 and H5) and MANCOVAs to test the
hypotheses with covariates (H4 and H5). Both types of
omnibus tests are followed by ANOVAs to test for sig-
nificant effects. The a level was set at 5% for all
analyses.

Results

Descriptive Statistics

Table 2 provides descriptive statistics for all manifest
variables used in the analyses. There were no variables
that digressed substantially from the expected distri-
butions, and all correlations were in the expected
directions.

Factorial Validation of the Cognitive Load Rating
Scales (RQ1)

The first research question addressed whether the theo-
retical model of three correlated cognitive load factors still
held in the context of teacher education. The assumed
model fit the data well at both time points (see Table 3). All
factor loadings were significant and positive. There was a
strong positive latent correlation between intrinsic load
and extrinsic load (r,; = .74, p <.001; 7, = .58, p < .001) but
only a small negative latent correlation between intrinsic
and germane load (r,; = —.14, p = .043; r,, = —.01, p = .804).
The negative latent correlation between extrinsic and
germane load was not statistically significant either
(rn = —.11, p = .144; r,, = —.04, p = .303). There were no
substantial residual covariances.

The measurement model showed metric and scalar
invariance across the two time points (Table 3). The
two measures were, therefore, aggregated into a single
measure for all further analyses.

Table 2. Means, standard deviations, and correlations for all manifest variables

Variable M SD 1 2 3 4 5 6 7 8 9
1. Intrinsic load t1 2.98 2.24 —

2. Extrinsic load t1 1.68 1.95 Rackad —

3. Germane load t1 7.36 2.36 -3 -7 —

4. Intrinsic load t2 212 2.38 .58** L 05 —

5. Extrinsic load t2 1.63 K] .38** 43F* —.31x* .39** —

6. Germane load t2 7.1 3.18 -.19 —.23* 76** —.04 —.04 —

7. Conceptual know t1 0.43 0.18 -.07 -n 26* —.01 —.00 16 —

8. Procedural know t1 0.46 0.20 —.05 -.16 .20 -4 -4 A4 19 —

9. Conceptual know t2 0.52 0.21 -.10 -8 .26% —-.08 —-.08 19 .B62%* .09 —
10. Procedural know t2 0.54 0.21 —.08 —.10 43** —.08 —-.16 .25% 31 455 40%*

Note. M = mean; SD = standard deviation; Know = knowledge.
*p < .050; **p < .010.
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Effect of Instructional Design on Cognitive Load (RQ2)
In line with Hypotheses 1-3, a MANOVA analyzing mean
differences within any of the groups across the three facets
of cognitive load showed a significant main effect (Fe;154 =
3.23, p = .005). Follow-up ANOVAs revealed significant
main effects for intrinsic load (F5;7s = 5.30, p = .007, n? =
.12), extrinsic load (Fa;75 = 6.02, p = .004, n? = .14), and
germane load (Fp75 = 3.74, p = .028, n? = .09).

The example-based learning condition showed the
highest intrinsic load, followed by the problem-solving and
control groups. However, only the difference between
worked examples and the control group was statistically
significant (Prukey = -006, d = 0.87). The same pattern was
found for extraneous load, with the worked examples
condition showing the highest load, followed by the
problem-solving condition and the control group. Again,
only the difference between the worked examples condition
and the control group was statistically significant (pryxey =
.003, d = 0.92). Finally, the problem-solving condition
showed the highest germane load, followed by the control
group and the worked examples condition. Only the dif-
ference between problem-solving and worked examples
condition was statistically significant (pryxey = -025, d =
0.72). These results partially contradict Hypotheses 1-3 and
are visually illustrated in Figure 1.

Effect of Instructional Design on Diagnostic

Competency While Controlling Cognitive Load (RQ3)
A MANOVA analyzing mean differences within any of the
groups across the gains on the two facets of diagnostic
competencies showed a significant main effect (Fy;156 =
6.40, p < .001). Follow-up ANOVAs revealed significant
main effects of the experimental condition on conceptual
knowledge (F;5 =10.41, p <.001, 1% = .21) and procedural
knowledge (F,;5 = 6.28, p = .003, n? = .14). For conceptual
knowledge, participants in the problem-solving condition
increased their scores significantly more than participants
in the control condition (prukey < -001, d = 1.24) and the
worked examples condition (prykey = .012, d = 0.79). There
was no significant difference in gain scores between the

Table 3. Model fit for all measurement models

control and worked example conditions (Prukey = -236,
d = —0.45).

A similar pattern was observed for procedural knowledge.
Participants in the problem-solving condition increased their
scores significantly more than participants in the control
condition (prukey < -001, d = 0.95) but not the worked ex-
amples condition (Prykey = -056, d = 0.63). There was no
significant difference in gain scores between the control and
worked example conditions (pryey = 469, d = —0.32).
Adding the three cognitive load variables as covariates in a
MANCOVA analyzing mean differences within any of the
groups across the gains on the two facets of diagnostic
competencies still showed a significant main effect (Fy;150 =
6.27, p < .001). Follow-up ANCOVAs revealed significant
main effects of the experimental condition on conceptual
knowledge (F,;75 = 11.01, p < .001, n? = .22) and procedural
knowledge (F»75 = 5.40, p = .006, n? = .12). Adjusting for
cognitive load, participants in the problem-solving condition
still increased their conceptual knowledge scores significantly
more than participants in the control condition (pryxey < .001,
d = 1.31) and the worked examples condition (prey = -049,
d = 0.70). Also, participants in the problem-solving condition
increased their procedural knowledge significantly more than
participants in the control condition (prukey = -005, d = 0.90)
but not the worked examples condition (pruey = -137, d =
0.56). These results contradict Hypotheses 4 and 5.

Discussion

Several researchers have described the importance of
having reliable and valid measures of cognitive load
(Korbach et al., 2018). Subjective measures of cognitive
load are easy to administer, and learners can use stan-
dardized rating scales to rate their perceived task diffi-
culty, engagement, or effort in performing a given learning
task. In addition, subjective measures can be used in
different learning environments with different learning
contexts and participants. To validate one of the most

Model x° df o CFl RMSEA [Cl] ACFI Decision
Measurement models
Measurement model t1 60.13 62 544 1.00 .00 [.00-.06] Good fit
Measurement model t2 58.56 62 .600 1.00 .00 [.00-.06] Good fit
Invariance testing
Configural model 118.69 128 618 1.00 .00 [.00-.05] Good fit
Metric model 135.19 134 455 1.00 .01 [.00-.06] 0.00 Accept invariance
Scalar model 138.49 144 614 1.00 .00 [.00-.05] 0.00 Accept invariance

Note. df = degrees of freedom; CFl = comparative fit index; Cl = confidence interval; RMSEA = root-mean-square error of approximation.
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commonly used subjective measures of cognitive load
(Leppink et al., 2013) in a novel context, we designed an
experimental study to measure the cognitive load of
preservice teachers in the context of science teacher ed-
ucation in Tanzania. Participants were undergraduate
students on the Bachelor of Science Education program,
studying physics in the third year of the program.

The first research question in this study was whether
the theoretical model of three correlated cognitive load
factors still holds in the context of teacher education. We
examined the factorial validity of the instrument in sci-
ence education. Our results support the three-factor so-
lution. The pattern of correlations is consistent with meta-
analytic findings (Krieglstein et al., 2022) on rating scales
based on Leppink et al. (2013). We found a substantial
correlation between internal and external cognitive load,
but hardly any correlation between the two facets and
germane load. These findings support the argument that
both sources of cognitive load may be difficult for learners
to assess in a differentiated way, as complex learning
content cannot be presented in a simple way, and thus,
extrinsic cognitive load increases due to the complex
presentation. Intrinsic and germane load, on the other
hand, showed no correlation despite their common
conceptual background (Kalyuga, 2011). However, in-
trinsic load results from the complexity of the learning
material and is experienced passively by the learner,
whereas germane load refers to the allocation of cognitive

© 2023 The Author(s). Distributed as a Hogrefe OpenMind article

Figure 1. Average cognitive load by facet and
experimental condition. *p < .050.

Condition

. Problem-Solving
. Worked Examples
Control

resources and is therefore active in nature (Klepsch &
Seufert, 2021). Finally, since germane load refers to the
allocation of cognitive resources to learning-relevant
activities (Bannert, 2002), its active nature is obvious.
In contrast, learners experience extrinsic load as a result
of the passive presentation of learning materials. Con-
sistent with this distinction, the two types of load were not
correlated. These results are also consistent with previous
findings on the cognitive load of preservice teachers in
comparable tasks (e.g., Syring et al., 2015).

The second research question concerned the effect of
instructional design on cognitive load. Our findings par-
tially support H1, H2, and H3, which postulated that
subjective cognitive load should vary depending on
whether participants learned in a problem-solving condi-
tion, a worked example condition, or an active control
condition. The rating scale is appropriate to differentiate
the three types of cognitive load in a higher education
context, where preservice teachers learned in a
simulation-based learning environment to diagnose stu-
dents’ physics misconceptions. However, the results in-
dicated that preservice teachers experienced higher
intrinsic and extrinsic cognitive load when learning to
diagnose with example-based learning instructions than
with problem-solving. This may be due to the nature of the
learning material and the instructional strategies used in
the training intervention. In the example-based condition,
preservice teachers were expected to study examples and
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consider any student misconceptions. Also, preservice
teachers may already have enough knowledge to easily
solve the given problems, but still need to study the ex-
amples. The findings are consistent with Chernikova et al.
(2020) who found that less advanced learners might
benefit more from scaffolding support with a high level of
guidance (examples) than more advanced learners for
whom self-regulated learning (problem-solving) is the best
instructional strategy. Surprisingly, preservice teachers
who learned through a problem-solving instructional
strategy experienced higher germane cognitive load than
those who learned through examples. Again, the type of
instructional support (problem-solving) may explain this
observation.

Finally, we investigated whether our participants would
differ in their learning gains and whether these differences
could be attributed to the different cognitive load imposed
by the instructional design. While we found that partici-
pants benefited most from the problem-solving condition,
adjusting for cognitive load did not eliminate this differ-
ence. The results are identical for both conceptual and
procedural knowledge. This finding contrasts with the
general notion that experienced cognitive load should
influence learning gains through reduced working mem-
ory capacity. However, similar findings were reported by
Schwaighofer et al. (2016) and replicated by Bichler et al.
(2020). Both papers found that individual differences in
shifting, rather than working memory capacity, explained
differences in worked examples and problem-based
learning.

Limitations

There are several limitations that should be taken into
account when interpreting the results. First, the sample
size was relatively small, which may limit the generaliz-
ability of the findings. Future studies should aim to rep-
licate these findings with a larger sample size to increase
the generalizability of the results. Second, although this
study provided initial evidence for the validity of the rating
scale in a novel context, further replication studies are
needed to establish the generalizability of the scale beyond
the physics domain. Future studies should examine the
validity of the scale in other domains to determine whether
the findings generalize to other domains.

Another limitation of the present study is the lack of an
active control group, which may limit our ability to attri-
bute observed effects solely to the intervention under
investigation. By using a passive control group instead, we
acknowledge the potential for confounding factors or
natural changes over time to influence the observed re-
sults. Future research should consider including an active

Psychological Test Adaptation and Development (2023), 4, 246-256

control group to better isolate the specific effects of the
intervention and to increase the internal validity of the
results. Investigating the potential differential effects be-
tween the passive and active control conditions could
provide valuable insights into the comparative effective-
ness and mechanisms of action, further strengthening the
evidence base in this area. Finally, the current study only
quantitatively examined a limited ontological network of
construct validity. Future research should examine the
validation of the rating scale through interviews with
preservice teachers in a new setting to test how they
perceive the items.

Conclusions

The current study provided evidence that the theoretical
model underlying the rating scales developed by Leppink
et al. (2014) is still valid in a different learning context. The
scales of Leppink and colleagues used in this study were
found to be reliable and valid for science teacher education.
They can be easily used in science teacher education to
assess the cognitive load caused by learning activities and
materials across the curriculum. Therefore, the results of
this study validate the use of a recently established psy-
chometric self-report rating scale to assess three types of
cognitive load in a different learning context and with
learners of different races and characteristics.
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