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Abstract 

 

A previous study found that task shifting and fluid intelligence, but not working memory 

capacity (WMC) and prior knowledge, influenced the worked example effect (Schwaighofer, 

Bühner, & Fischer, 2016). To increase confidence in these findings, we report a pre-

registered extended replication study of Schwaighofer et al.’s investigation. University 

students (N = 231, Mage = 22.40 (SD = 4.33), 87% women) solved statistical problems with 

textbook materials presented on a laptop in one of four conditions in a 2 x 2 factorial 

between-subjects design. We compared worked examples vs. problem-solving (replication) 

and with vs. without time pressure (extension). Time pressure was added to test whether 

learners in the original study were able to offload WMC demands, which would explain why 

the WMC moderation was not found. Results showed that the advantage of worked examples 

over problem-solving decreased with increasing prior knowledge, suggesting that problem-

solving becomes eventually more effective than worked example study. Similarly, the benefit 

of worked examples over problem-solving decreased with increasing shifting ability of a 

learner. However, contingencies on WMC or fluid intelligence were not detected. Our 

extension analysis indicated the worked example effect was also not contingent on WMC 

even when learners were under time pressure. These findings underline the important role 

that task shifting might play in scaffolded learning environments and suggest that trading in 

the focus on WMC for a broader perspective on cognitive architecture provides novel 

explanations for instructional effectiveness. Our study further highlights the importance of 

more customized instructional support. 

 Key words: worked examples, problem-solving, working memory capacity, shifting, 

fluid intelligence 
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Educational Impact and Implications Statement 

In our study we investigated whether learners’ cognitive characteristics influence the 

effectiveness of instruction. We compared worked example study to problem-solving and 

found that while worked examples facilitated learning for those learners with lower prior 

knowledge, learners with higher prior knowledge can handle problem-solving demands. 

Likewise, when learners are good in shifting their attention between different tasks, a 

cognitive ability referred to as “task shifting”, problem-solving is an aptly suited approach to 

foster learning but when this ability is low, providing worked examples seems to be vital. 

These findings underpin the importance of more customized approaches to ultimately achieve 

effective instruction for all learners.  
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How Working Memory Capacity and Shifting Matter for Learning with Worked Examples – 

A Replication Study  

By building upon what is known about human cognition, instructional theory has 

matured over the last decades and developed principles for effective instruction (Ginns & 

Leppink, 2019; Sweller, 2010; Sweller, van Merriënboer, & Paas, 2019). In particular, 

fostering complex learning effectively requires instructional design to consider the limited 

capacity of our working memory (Sweller, 1988; Sweller et al., 2019). Besides working 

memory capacity (WMC), there are other characteristics of our cognitive architecture that are 

relevant for learning but have not yet been systematically considered in instructional theory. 

For instance, it is well established that fluid intelligence predicts academic achievement (e.g., 

Primi, Ferrão, & Almeida, 2010; Roth et al., 2015) and further, our ability to flexibly switch 

between executing different tasks, referred to as “shifting” (Miyake et al., 2000), has been 

shown to positively predict math and reading performance (Yeniad, Malda, Mesman, van 

IJzendoorn, & Pieper, 2013). We suggest that broadening the view on cognitive architecture 

may enrich instructional theory as it may provide more detailed insight into cognition and 

learning which will result in refinement of known or discovery of new instructional principles 

and may ultimately lead to more effective instruction.   

We ground our suggestion in early work on aptitude-treatment interactions that 

identified fluid intelligence as a moderator of instructional treatment (Snow & Lohman, 

1984), as well as in a previous investigation on statistical problem-solving with worked 

examples finding that the benefit of worked examples over problem-solving was contingent 

on shifting ability and fluid intelligence, but not detecting such contingencies for WMC 

(Schwaighofer, Bühner, & Fischer, 2016). These results give reason to contemplate 

advancing instructional theory from focus on a single cognitive function (WMC) to 

consideration of multiple cognitive characteristics (e.g., WMC, shifting, reasoning). 
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Moreover, they suggest task shifting as a crucial component of cognitive architecture within 

instructionally supported learning, which aligns with most recent suggestions in advancing 

instructional theory (Sepp, Howard, Tindall-Ford, Agostinho, & Paas, 2019). 

We report a pre-registered (https://osf.io/dx6qv/) (Bichler, Bühner, Fischer, Stadler, & 

Greiff, 2019, October 5) replication study of Schwaighofer and colleagues’ (2016) 

investigation. Although replication is seen as a major pillar of empirical research (Schmidt, 

2009), replication studies in psychological research are scarce at best (Makel, Plucker, & 

Hegarty, 2012). We aim to strengthen Schwaighofer and colleagues’ contribution by 

replicating the experimental conditions of their study (worked examples vs. problem-solving) 

and by including the same moderating variables (prior knowledge, WMC, shifting, and fluid 

intelligence). Schwaighofer and colleagues assumed differential effects of all investigated 

cognitive functions and were surprised by the null finding regarding WMC. The authors 

described that learners in their study were not under time pressure and thus might have 

offloaded WMC demands, for example by re-reading (de Jong, 2010) and proposed the lack 

of time pressure in their study as potential reason for not detecting the assumed influence of 

individual differences in WMC. We extended our replication study and added a time pressure 

manipulation to address to what extent individual differences in WMC matter for 

instructionally supported statistical problem-solving.  

Problem-Solving With Worked Examples 

 Per definition, we encounter a problem when we want to achieve a goal but face an 

obstacle trying to get from our current state to the goal state (Jonassen, 2000). This holds for 

a novice as well as for an expert but what specifically posits a challenge varies as a function 

of expertise. Consequently, problem-solving is a question of distance between the current 

state and the desired state. This distance is, from an information processing perspective, 

reduced through understanding and search processes. Understanding the problem creates a 
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representation of the problem, referred to as problem space. Within this space, the problem 

solver searches for operators and by applying operators transforms a current state into a new, 

closer-to-the-goal state until the goal is reached (Newell & Simon, 1972). A statistical 

problem might exist when a researcher is curious about the relative effect of motivation and 

intelligence on mathematics learning but does not yet know how to investigate such a 

question. Statistical concepts, such as independent, dependent, or control variables, research 

designs, or statistical analyses act as operators, which the learner can use to solve the 

problem.  

Searching the problem space until one finds the appropriate operator demands 

learners’ cognitive abilities (Lee & Anderson, 2013). While searching, the learner is required 

to hold the current state, the desired state, and possible operators present in working memory. 

Because WMC is limited, problem-solving can interfere with learning. The problem solver 

uses mental capacity for search processes and not for schema building processes, the 

processes that actually lead to long-term learning (Sweller, 1988). Learning can be fostered 

by instructional support like worked examples, which present learners not only a problem but 

also the problem’s solution and the steps required to reach it (van Gog & Rummel, 2010). 

Through this design, the learner is not tied up in search processes, experiences less cognitive 

load, and can focus on acquiring schemas (Sweller, 1988). It is emphasized elsewhere that 

worked examples foster schema acquisition by helping learners understand domain 

principles. Whereas learners mainly apply weak strategies (general operators such as: finding 

a statistical analysis) in problem-solving, they apply specific operators with worked examples 

(using a multiple linear regression) which contributes to acquisition of domain specific 

schemas (Renkl, 2014).  
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Moderators of the Worked Example Effect 

Prior Knowledge  

To be more effective than problem-solving, worked examples have to be used in early 

stages of cognitive skill acquisition. Learners with higher prior knowledge actually benefit 

more from engaging in problem-solving than in worked example study, a finding termed the 

expertise-reversal effect (Kalyuga, 2007; Kalyuga, Ayres, Chandler, & Sweller, 2003; 

Kalyuga, Rikers, & Paas, 2012). In early phases of learning, learners depend on analogy and 

understanding of abstract rules. In later stages, when learners have higher prior knowledge in 

a domain, they automatize and optimize their problem-solving ability (ACT-R framework, 

Anderson, Fincham, & Douglass, 1997). Worked examples aptly match the need of learners 

to understand underlying problem structures and domain concepts. As this need changes with 

increasing expertise, worked examples become less effective and eventually dysfunctional. 

Worked examples interfere with the maybe-not-yet-perfect but already automated problem-

solving of more expert learners whose need to perfect their ability is more fittingly supported 

by practicing problem-solving (Atkinson, Derry, Renkl, & Wortham, 2000).  

Working Memory Capacity and Shifting Ability 

Working memory is a mental storage system that processes information and 

constantly monitors the status of this information to only maintain the most relevant 

information needed to achieve a goal (Miyake et al., 2000). It is often operationalized in 

terms of capacity because the information that can be processed and maintained 

simultaneously is limited (Draheim, Hicks, & Engle, 2016). Shifting refers to the ability to 

switch quickly between executing different tasks (Miyake et al., 2000). For example, reading 

a paper, switching to answer a question of a colleague in an instant, and then quickly going 

back to reading. Shifting requires thus a conscious switch of attention between different 

mental task sets which differentiates it from attentional shifts in visual processing (Miyake et 
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al., 2000). WMC and shifting belong to a set of basic cognitive functions referred to as 

executive functions. They uniquely contribute to cognition (Miyake & Friedman, 2012) but 

are also assumed to be critical for one another, as each ability requires aspects of the other 

one. For example, shifting from reading a paper to answering a colleague’s question requires 

representation of new information in working memory. The information related to the 

colleague’s question, currently activated in working memory, has to be replaced by 

information relevant to reading the paper when shifting back to the previous activity of 

reading (for more details on the conceptual and empirical relationship see for example 

Draheim et al., 2016). 

In cognitive load theory, WMC serves as the central explanation as to why certain 

instruction is effective. Specifically, the theory states that instruction is effective when 

designed to reduce cognitive load, as in the case of worked examples (Sweller, 1988, 2010). 

Because worked examples are often associated with reduced cognitive load (e.g., Nievelstein, 

van Gog, Boshuizen, & Prins, 2010; Paas, 1992; van Gog, Paas, & van Merriënboer, 2006), 

van Gog and Rummel (2010) suggested that studying examples “may be even more effective 

for learners who have lower working memory capacity” (p. 160). Results of Schwaighofer 

and colleagues’ (2016) study are interesting in this respect because worked examples were 

more effective than problem-solving irrespective of learner’s WMC. Cognitive load theory 

not only emphasizes limited WMC but also that the capacity function of working memory is 

relative to the knowledge structures in long-term memory (LTM) (Sweller, 1988). This aligns 

with the proposal that knowledge in a domain allows for an extended use of WMC referred to 

as long-term working memory (LT-WM) (Ericsson & Kintsch, 1995). The idea of LT-WM 

developed from research showing that expert chess players have better recall than novices, 

but only for realistic and not random chess positions, and while both experts and novices 

recall chess positions in chunks, experts are able to store larger chunks (e.g., Chase & Simon, 
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1973; Ericsson & Kintsch, 1995). That is, more advanced learners likely use their low 

capacity more efficiently because they can rely on existing knowledge structures that novice 

learners have not yet developed. Individual differences in WMC might consequently not 

matter for the worked example effect as differences are possibly compensated by prior 

knowledge. Further, cognitive load theory assumes that any learner has insufficient WMC 

when presented with a novel, complex (high element interactivity) problems (Paas & Sweller, 

2014; Sweller et al., 2019), like those used in Schwaighofer et al.’s study. Assuming 

individual differences in WMC matter, Schwaighofer et al. (2016) offered a different 

explanation for their finding that WMC did not moderate the worked example effect: The 

authors discussed the possibility that learners in their study found ways to “offload” cognitive 

load (de Jong, 2010). Because learners were not under time pressure, they may have for 

example gone back to the problem description to refresh relevant information in working 

memory whenever they needed to. It remains thus open whether the worked example effect is 

contingent on WMC when learners have no options to offload cognitive load.  

Schwaighofer et al.’s (2016) study provided novel insights regarding other 

components of cognitive architecture. Learners with lower shifting ability benefited more 

from worked examples than from problem-solving but this benefit of worked examples over 

problem-solving decreased with increasing shifting ability, suggesting that it eventually 

reverses. In the problem-solving process, learners frequently have to switch between 

processing the problem description, encoding information from the materials, and applying 

encoded information to the problem at hand in order to reach the solution (Bassok & Novick, 

2012). Learners thus shift their attention between external sources of information and further 

between different cognitive actions such as encoding information when making sense of the 

learning material and applying knowledge when generating the problem solution. A worked 

example might reduce the demand on learner’s shifting ability as it combines the relevant 
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information from problem and materials which reduces the need to externally switch between 

problem and solution materials. Moreover, solution steps of the worked example show how 

problem and conceptual information relate. Hence, worked examples reduce the demand to 

frequently switch between mental actions of encoding and applying which makes it easier for 

the learner to focus on processing the relations.  

The theoretical accounts for why shifting attention between different tasks or actions 

comes with a cost, further explain why worked examples are particularly effective for 

learners with lower shifting ability. Reconfiguration theory assumes that the cognitive system 

must reset itself to enable a person to go back to what they have been doing before attention 

was shifted to a different task and that costs arise due to this reconfiguration (Rogers & 

Monsell, 1995). In comparison to problem-solving, a worked example might support learners 

in returning back to the mental state they were in before switching attention as its straight 

forward structure of solution steps guides learners attention. Interference theory assumes that 

the costs of switching back to a previous activity stem from inhibiting the previous, now 

irrelevant activity (Alport, Styles, & Hsieh, 1994). The step-wise problem solution of a 

worked example directly presents the next step to the learner, making it easier to inhibit the 

previous activity and move on to the next operator. Without the worked example, the learner 

depends much more on own effort to proactively disengage from the previous activity. While 

it is still debated whether reconfiguration or interference theory better accounts for shifting 

costs, there is agreement that the theories are not mutually exclusive (Draheim et al., 2016). 

Both theories provide insight into how worked examples might reduce task shifting demands.  

Fluid intelligence 

 Fluid intelligence comprises our ability to reason; to use logic and recognize patterns 

in new situations (König, Bühner, & Murling, 2005). Although fluid intelligence and 

executive functions are related to a certain degree, intelligence and executive functions are 
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empirically separable (Friedman et al., 2006) and each explain unique variance in learning 

outcomes (Yeniad et al., 2013). Empirical evidence showed that learners with lower 

intelligence do better in more structured instructional settings and learners with higher 

intelligence do better in less structured instructional settings (Snow & Lohman, 1984). 

Similarly, Schwaighofer et al.’s (2016) study showed that worked examples were more 

effective for learners with lower fluid intelligence but this difference decreased with 

increasing fluid intelligence suggesting that with higher fluid intelligence problem-solving 

becomes more effective than worked example study. Because worked examples integrate 

relevant information from problem and solution materials, learners are less demanded to 

reason which is the critical information from the problem, which are the relevant operators, 

and which operators are applicable to which information. Taken together, it seems likely that 

effects of certain support tools depend on the fluid intelligence of a learner.  

Rational for Investigating Differential Effects of Instructional Support 

A key ingredient to effective instruction is designing support tools that consider 

human cognitive architecture (Sweller, 1988, 2010). Whereas the general structure of human 

cognitive architecture seems fairly universal, the extent to which individuals differ on single 

cognitive abilities has been found to be substantial (e.g., Friedman & Miyake, 2017). 

Although designed considering human cognitive architecture, learning experiences or 

instructional support may consequently still be ineffective. According to aptitude theory, 

performance will even be impaired if the “inner” and “outer” environment are inapt (Snow & 

Lohman, 1984). Thus, aligning design of instruction with individual learner needs is desirable 

but necessitates knowledge of which aptitudes the design to align to.  

There is considerable empirical evidence that prior knowledge should be factored in 

when making instructional decisions. Levels of prior knowledge determine whether a worked 

example or problem-solving activity is better suited (Kalyuga et al., 2003) or whether self-
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explanation prompts are effective (Leppink, Broers, Imbos, van der Vleuten, & Berger, 

2012). Not nearly as much is known about individual differences in executive functions or 

fluid intelligence as is known about prior knowledge in this respect. As executive functions 

and fluid intelligence matter for learning (e.g., Yeniad et al., 2013; Yuan, Steedle, Shavelson, 

Alonzo, & Oppezzo, 2006) and learners differ on these aptitudes (Friedman & Miyake, 

2017), differential effects of instructional support seem likely and these aptitudes worth 

investigating.  

While identifying aptitude-treatment interactions allows for more customized and 

probably more effective instruction, the impact of such investigations goes clearly beyond the 

direct practical one. The ability to describe so-called compound effects ("effects that alter the 

effect of other instructional effects", Sweller et al., 2019, p. 10) has most recently been 

emphasized as sign of matured instructional theory. Aptitude-treatment research not only 

pinpoints the aptitudes that matter but also limitations of effects generally assumed to be 

effective which results in well-described compound effects.  

The Present Study 

The worked example effect is backed up with convincing theoretical and empirical 

evidence. Although being the central component of cognitive load theory, only a few studies 

included measures of WMC as control (Berends & van Lieshout, 2009; van Gerven, Paas, 

van Merriënboer, & Schmidt, 2002) or moderating variable (Lusk et al., 2009; Schwaighofer, 

Vogel, et al., 2017; Seufert, Schütze, & Brünken, 2009). Schwaighofer et al.’s (2016) study 

utilized objective measures and tested the worked example effect’s contingency on WMC 

that was suggested by van Gog and Rummel (2010). As the results indicate that shifting 

ability might be more important than WMC in instructionally supported learning, 

Schwaighofer et al.’s study underlined the benefit of broadening the perspective on human 

cognitive architecture. We replicated Schwaighofer and colleagues’ study to validate this 
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novel perspective on how core components of our cognitive architecture influence 

instructional effectiveness. As in the original study, we compared the effect of worked 

examples and problem-solving on application-oriented knowledge which the authors defined 

as “knowledge necessary to identify relevant aspects of a problem as well as knowledge that 

are applicable to solve the problem” (Schwaighofer et al., 2016, p. 982). We further included 

the same moderator variables that were investigated in the original study: prior knowledge, 

WMC, shifting, and fluid intelligence. Schwaighofer et al. (2016) took an individual 

differences perspective and assumed that worked examples would be more effective than 

problem-solving for learners with lower WMC, but that learners with higher WMC could 

readily use problem-solving. In contrast, cognitive load theory assumes that (in comparison 

to prior knowledge) the impact of individual differences in WMC is too marginal to matter 

when learning complex materials (Paas & Sweller, 2014; Sweller et al., 2019). We extended 

the original study by including a time pressure manipulation, investigating whether WMC 

moderates the worked example effect when learners are not able to offload memory demands. 

This extension condition will contribute to answering the question whether individual 

differences in WMC play a role in instructionally supported learning.  

Replication and pre-registration 

 For clear communication of the replicated and the newly investigated aspects, we 

distinguish the “replication” and the “extension” condition (Schmidt, 2009). The replication 

part of our study can be categorized as “direct” or “close” because we have repeated the 

experimental procedure of the original study and used the same or only slightly different 

measures and materials (Brandt et al., 2014; Schmidt, 2009). The study was pre-registered 

through the Open Science Framework (OSF) (Bichler et al., 2019, October 5).1  

                                                      
1 Please note that Matthias Schwaighofer originally pre-registered. Matthias Schwaighofer abruptly passed away 

on June 10th, 2017. We created a fork of the original pre-registration, which can now be found under the first 

authors name. 
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Hypotheses 

 Hypotheses addressed in the replication part of our study are exactly the same as the 

hypotheses addressed in the original study:  

  Hypothesis 1: Learners acquire more application-oriented knowledge with worked 

examples than through problem-solving.  

Hypothesis 2: Learners indicate less cognitive load when they study worked examples 

compared to when they problem-solve.  

Hypothesis 3: Worked examples are more effective than problem-solving for learners 

with lower prior knowledge but problem-solving is more effective than worked examples for 

learners with higher prior knowledge to acquire application-oriented knowledge. 

Hypothesis 4a: The benefit of worked examples over problem-solving is greater for 

learners with lower than for learners with higher WMC. 

Hypothesis 4b: The benefit of worked examples over problem-solving is greater for 

learners with lower than for learners with higher shifting ability. 

Hypothesis 4c: The benefit of worked examples over problem-solving is greater for 

learners with lower than for learners with higher fluid intelligence. 

Hypotheses addressed in the extension part of our study, were not addressed in the 

original study:  

Hypothesis 1: Learners who are under time pressure indicate higher cognitive load 

than learners who are not under time pressure.  

Hypothesis 2: The benefit of worked examples over problem-solving is greater for 

learners with lower WMC than for learners with higher WMC only if learners are under time 

pressure (moderated moderation). 
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Method 

Sample 

One hundred and fifteen higher education students of social sciences programs at a 

German university participated in the replication condition of the study. One hundred and 

sixteen students participated in the extension condition (NTotal = 231). Participants were 

recruited through announcements in lectures, postings, social media, and an official 

university email service and compensated with 55€ or a participation certificate (needed by 

psychology students to complete undergraduate psychology). Participants were excluded 

from the sample if they had missing data (e.g., participated in only one of the two sessions). 

Sample characteristics are summarized in Table 1. Mean age and gender distribution of the 

replication condition are similar to the original sample (compare Schwaighofer et al., 2016). 

Design 

This study was pre-registered as laboratory study with a 2X2 between-subjects 

design. A repeated measure was used to assess prior and posttest knowledge, moderator 

variables include prior knowledge, WMC, shifting, and fluid intelligence. “Research 

Randomizer” (www.randomizer.org) was used to randomly allocate participants to 

conditions. The independent variable of the replication is worked examples: with (n1 = 57) 

vs. without (n2 = 58), where without worked examples refers to problem-solving in this 

paper. The second independent variable pertains to the extension and is time pressure: with 

(n3 = 58) vs. without (n4 = 58). 

Material 

 Participants worked on six statistical problems, each of which described a 

hypothetical research project. Participants were asked to address the research question 

statistically and prompted to justify their answer (Figure 1) using textbook material on the 

general linear model and research methodology.  
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The expected solution included correctly identifying variables as independent, 

dependent, or control, their scale level, a research design, a statistical analysis, and statistical 

assumptions related to the chosen analysis. Material was presented on PowerPoint slides on a 

laptop. Scrolling between slides was not restricted, however, participants were asked to only 

go to the next problem once they solved the previous one completely.  

Worked Examples and Time Pressure  

The worked example showed participants how to solve the problem step by step. First 

step: Identifying independent and dependent variables and proposing a design for the study; 

Second step: Deciding which statistical analysis was appropriate; Third step: Pointing out 

which statistical assumptions had to be tested. Each step was shown on one slide with the 

step as heading and the problem as body of the slide. The solution was shown in boxes next 

to the problem on the right side of the slide. Solution relevant information from the problem 

was linked via arrows to the box the solution was presented in (Figure 2). The three worked 

example slides were not available in the problem-solving condition. Participants were 

prompted to explain their solutions on a sheet of paper to make sure problems were actively 

processed in both conditions (Schwonke et al., 2009).  

Time pressure was induced by explicitly telling participants to finish all six practice 

problems in 45 minutes. To maintain time pressure during the intervention, a red timer 

counting down was shown on their desktops. Participants in the condition without time 

pressure also had 45 minutes to solve all problems but were not told in advance and did not 

see the countdown.  

Measures  

 Knowledge tests. Application-oriented knowledge was assessed at pre- and posttest. 

Two parallel tests were used, both consisted of six open response items. Each item described 

a statistical problem similar to the practice problems but shorter (Figure 3). Participants were 
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asked to identify variables, suggest a design and statistical method, and name two statistical 

assumptions. From pre- to posttest, surface information of the problems was changed but 

their structure was kept the same. For example, the research question was about flavors of 

yogurt in pre-, and about the effectiveness of diets in posttest (surface), but both problems 

included a three-level independent variable, repeated measurement and an interval-scaled 

dependent variable (structure). Tests were coded with rubrics and points were awarded for 

information that was present in participants’ answers. The maximum score was 26 points. 

The Kuder-Richardson-20 index was used to estimate reliability and showed rtt = .78 for pre- 

and rtt = .75 for posttest (N = 231, respectively). 

Cognitive load. Cognitive load was measured with a 9-point rating scale developed 

by Paas (1992), which was translated to German by the first author of the original study. 

Answer options ranged from very, very low mental effort (1) to very, very high mental effort 

(9). Participants had to indicate their perceived mental effort after each statistical problem for 

as many problems as they completed. The average cognitive load across the total number of 

completed problems was used as indicator of cognitive load. 

 Working memory capacity. WMC was measured with the shortened version of the 

automated operation, reading, and symmetry span tasks (Oswald, McAbee, Redick, & 

Hambrick, 2015) in E-Prime Version 2.0.10.356 (Psychology Software Tools, Pittsburgh, 

PA). 

The three automated span tasks differ only concerning the stimulus material. 

Participants have to indicate whether a simple mathematical equation is right or wrong 

(operation span), a sentence makes sense or not (reading span), or a pattern in an 8X8 matrix 

is symmetrical or not (symmetry span). Then, participants have to memorize a letter 

(operation and reading span) or the position of a red square in a 4X4 matrix (symmetry span). 

After a number of processing and memorization sequences, participants have to recall the 
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letters or the pattern of red squares in the right order. Correctly recalled elements across all 

six test trials are summed up and divided by the maximum possible score (30 for operation 

and reading, 24 for symmetry span) (Conway et al., 2005). The mean across the three tasks 

was used as capacity indicator. 

Internal consistency for each of the three tasks was: α = .56 (operation span, N = 228), 

α = .65 (reading span, N = 230), and α = .43 (symmetry span, N = 229) (method of Kane et 

al., 2004).2 

Shifting. Shifting was measured with the computerized number-letter, color-shape, 

and category-switch tasks (e.g., Friedman et al., 2016; Friedman et al., 2008) using the 

method of Friedman et al. (2016). 

In all shifting tasks there are two rules and two different stimuli indicate which rule 

has to be applied. In the number letter task, a number-letter pair (e.g., 4E) appears in a 2X2 

matrix. When the pair appears in one of the upper two quadrants, participants have to indicate 

whether the number is odd or even by pressing the ‘D’ (odd) or ‘L’ (even) key. When the pair 

appears in one of the bottom quadrants, participants have to indicate whether the letter is a 

vowel or consonant by pressing the ‘D’ (consonant) or ‘L’ (vowel) key. If the rule changes 

between trials, it is a switch trial, if the rule stays the same it is a non-switch trial. Switch-

costs are calculated by subtracting the mean reaction time of non-switch from the mean 

reaction time of switch trials. Higher switch-costs reflect lower shifting ability. The mean of 

all three tasks’ switch costs was used as indicator for shifting ability.  

Data was trimmed as described by Friedman et al. (2008) to handle outliers and 

improve normality. The split-half reliabilities (Guttman) were rtt = .88 (number-letter), 

rtt = .80 (color-shape), rtt = .81 (category-switch), N = 231 respectively. 

                                                      
2 Five participants had missing data on at least one of the three WMC tasks leading to different sample sizes in 

reliability analyses. 
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Fluid intelligence. Fluid intelligence was measured with three subtests of the 

computerized adaptive intelligence structure battery (INSBAT; Arendasy et al., 2012). For 

each subtest, the number of tasks depended on the performance of the participants.  

The subtests were numerical inductive, figural inductive, and verbal deductive 

reasoning. In numerical inductive reasoning, the rule underlying a series of numbers has to be 

identified to complete the series. In figural inductive reasoning, participants see a 3X3 matrix 

with one empty field. They have to identify the rule to choose the correct symbol out of 8 

possible symbols to complete the matrix. In verbal deductive reasoning, participants read two 

statements and have 45 seconds to draw a conclusion from these statements, choosing one of 

five possible answers. The results of all subtests were transformed into a raw score for fluid 

intelligence by the testing system. The reliability of each subtest was preset to α = .70.  

Control variables. Motivation was measured with the Questionnaire of current 

Motivation (QCM; Rheinberg, Vollmeyer, & Burns, 2001). The QCM consists of four 

subscales: Interest (5 items), challenge (4 items), probability of success (4 items), and anxiety 

(5 items) that are all answered on a 7-point Likert scale ranging from (1) disagree to (7) agree 

with only the extremes showing verbal anchors. See Table A1 for example items and 

reliabilities. Age and number of semesters were collected with other demographic data with a 

questionnaire. 

Manipulation check. Subjective time pressure was assessed with the item “Indicate 

how much time pressure you felt during working on the statistical problems.” Participants 

rated their subjective time pressure on a 10-point scale from “no time pressure” to “very, 

very, high time pressure” with verbal anchors for each point.  

Procedure 

 In the first session, participants provided demographic data, gave informed consent, 

and completed the 35 minutes pretest. Subsequently, participants completed the executive 
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functions tasks and the fluid intelligence test. The first session took about 3 hours; 

participants were allowed to take short breaks. The second session consisted of the 

intervention and posttest. Participants filled out the QCM items, then worked on solving six 

statistical problems in either one of the four conditions for 45 minutes. Cognitive load was 

measured throughout the intervention after completion of each problem. After the 

intervention participants worked on the posttest for approx. 35 minutes.  

Methodological differences between original and replication study. In the original 

study, the worked example was shown in plain text on three consecutive PowerPoint slides 

after the problem description slide. Each slide contained one solution step and its solution. In 

the replication study, each solution step and its solution were shown next to the problem 

description on a PowerPoint slide respectively on three consecutive slides. Relevant 

information was highlighted and linked with the solution via arrows. Because this change is 

visual in nature we believe that it has no other effect than possibly enhancing the worked 

example effect. 

Although conceptual and application-oriented knowledge were assessed in the 

original study, moderation analyses were only carried out for application-oriented knowledge 

(Schwaighofer et al., 2016). As the moderation analyses address the main questions of the 

replication, we only assessed application-oriented knowledge.  

To assess application-oriented knowledge more reliably, four new test items were 

added to the two used in the original study. Test time was adjusted from 20 minutes in the 

original study to 35 minutes in the replication to give participants sufficient time to solve all 

six problems. The intervention was 60 minutes long in the original study but participants did 

not need nearly that much time. Thus, the intervention phase was shortened to 45 minutes and 

three new practice problems were added to the three from the original study in the 

replication.  
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Differences between the pre-registration and our methodology. Additional 

preregistered hypotheses referring to new research questions including perceptual speed and 

complex problem-solving skills were not addressed in this report. Instead of the preregistered 

factor scores, we used mean scores across the three tasks for shifting and WMC because 

mean scores were used in the original study. Replication studies should not change how 

variables are operationalized to ensure unconfounded interpretation of replication results 

(LeBel, Vanpaemel, Cheung, & Campbell, 2019). 

Statistical analyses. The same cut-off values for effect sizes as in the original study 

were applied. We set an alpha level of 5% in all analyses and we report 95% bootstrapped 

(5000 samples) confidence intervals for unstandardized regression coefficients in moderation 

analyses, which were calculated with the SPSS (IBM SPSS Statistics, Version 24) macro 

PROCESS Version 3 (Hayes, 2018). We controlled influence of covariates on moderator and 

outcome and estimated heteroscedasticity-consistent standard errors (HC3). An alpha level of 

5% was used to determine statistical significance in all other analyses which are mentioned in 

the respective section of the addressed hypotheses. Preliminary and main analyses for the 

replication part of the study reported first and refer to N = 115 participants in the replication 

condition. Extension condition analyses refer to the full sample of N = 231 including 

participants from all four conditions.3 

Results 

Preliminary Analyses 

Meaningful correlations and differences at pretest. WMC and fluid intelligence 

were highly correlated r(114) = .48, p < .001, thus WMC was controlled for in the 

moderation analysis for fluid intelligence and vice versa. A similar correlation was found in 

                                                      
3 Five participants had missing data on at least one of the three WMC tasks leading to smaller sample sizes in 

analyses including WMC as moderator or control variable.  
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the original study. 

Cognitive load was not significantly correlated with WMC r(114) = .16, p = .087, 

which is consistent with the original finding. Cognitive load was not correlated with fluid 

intelligence r(115) = .10, p = .301 or prior knowledge r(115) = -.11, p = .226, which is 

inconsistent with the original study. Cognitive load was correlated with the two sub-scales of 

QCM anxiety and challenge. Learners who experienced more cognitive load had higher 

anxiety r(115) = .36, p < .001 and perceived the tasks as more challenging r(115) = .23, 

p = .015. Thus, anxiety and challenge were used as covariates when testing for differences in 

cognitive load between conditions (Hypothesis 2). Similar correlations were found in the 

original study.   

Differences in number of semester and age between groups at pretest were tested 

with t-tests. Number of semesters did not differ significantly between experimental 

conditions prior to the study t(113) = .44, ptwo-tailed = .661, d = .08, whereas age was 

significantly higher in the condition with worked examples than in the condition without 

(M = 24.21, SD = 6.23 vs. M = 22.49, SD = 3.29), t(84.60) = -1.84, ptwo-tailed = .069, d = .35 

(equal variances not assumed).  

 Prior knowledge and knowledge at posttest were strongly correlated r(115) = .64, 

p < .001. Semester was correlated with prior knowledge r(115) = .36, p < .001 and posttest 

knowledge r(115) = .34, p < .001 but not with knowledge gains (post-pre) r(115) = .09, 

p = .362. Age, however, was correlated with knowledge gains r(115) = -.21, p = .024 but not 

with prior or posttest knowledge (r(115) = .06, p = .552 and r(115) = -.12, p = .195, 

respectively). Thus, age and semester were used as covariates to test Hypotheses 1 and 2 and 

in all moderation analyses (Hypothesis 3, 4a-c). In the original study, age and semester were 

controlled in the same analyses. 

 For descriptive statistics of variables in the replication condition see Table B1. 
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Worked example effect on knowledge and cognitive load (Hypotheses 1 and 2) 

 Descriptive statistics for prior, post-test knowledge, knowledge gains, and cognitive 

load by experimental condition are found in Table B2.  

A two-factorial analysis of covariance (ANCOVA) with repeated measures including 

semester and age as covariates was used to test whether knowledge gains from pre- to 

posttest are greater in the worked examples compared to the problem-solving condition. 

Factor 1 was time of measurement (pre- vs. posttest) and factor 2 was worked examples (with 

vs. without). A statistically significant effect of time of measurement F(1,111) = 29.86, 

p < .001, 2 = .21 indicated that all participants improved from pre-test to post-test 

irrespective of the condition they were in. A statistically significant interaction effect 

F(1,111) = 4.50, p = .036, 2 = .04 (Figure 4) however showed that average knowledge gains 

from pre-test to posttest were greater for participants who had worked examples (Mpre = 4.01 

to Mpost = 8.41, Mgain = 4.40) in comparison to participants who engaged in problem-solving 

(Mpre = 4.75 to Mpost = 8.16, Mgain = 3.59). This interaction effect was also statistically 

significant in the original study. Thus, worked examples were more effective than problem-

solving in both studies. 

 Differences in cognitive load were tested with a one-factorial univariate ANCOVA 

with worked examples (with vs. without) as independent and cognitive load as dependent 

variable. There was no statistically significant difference between worked examples and 

problem-solving in cognitive load F(1,111) = 0.30, p = .585, 2 = .003. This finding aligns 

with the original study.  

Prior Knowledge Moderation (Hypothesis 3) 

A moderation analysis (Hayes, 2018) with worked examples (with vs. without) as 

independent, knowledge gains (post-test – pre-test score) as dependent, and prior knowledge 

as moderating variable was used to test whether the worked example effect was contingent on 
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levels of prior knowledge. The unstandardized regression coefficient for the conditional 

effect of worked examples on knowledge gains was significantly different from 0: b = -0.38, 

p = .015, 95% CI5000boot [-0.672, -0.095]. Simple slope analysis showed the following effects 

on different levels of prior knowledge: M(- 1SD) = 1.58, b = 1.99, SE = 0.67; M = 4.29, 

b = 0.95, SE = 0.48; M(+ 1SD) = 7.01, b = -0.09, SE = 0.68. Learners with lower prior 

knowledge acquired more knowledge in the condition with worked examples, learners with 

higher prior knowledge, in contrast, acquired more knowledge in the condition with problem-

solving (see Figure 5 for a visualization of the interaction effect). Prior knowledge did not 

significantly moderate the worked example effect in the original study. 

Executive Functions and Fluid Intelligence Moderations (Hypotheses 4a, 4b, & 4c) 

A moderation analysis with worked examples (with vs. without) as independent, 

knowledge gains (posttest – pretest score) as dependent, and WMC as moderating variable 

was used to test whether the worked example effect was contingent on levels of WMC. 

WMC did not moderate the effect of worked examples on knowledge gains b = 1.47, 

p = .346, 95% CI5000boot [-4.814, 3.525], (N = 114). Thus, the worked example effect is not 

contingent on levels of WMC, learners with lower and higher WMC benefited from worked 

examples over problem-solving. WMC did not moderate the worked example effect in the 

original study. 

The moderation analysis including shifting ability as moderator showed a significant 

interaction effect of worked examples (with vs. without) and shifting ability on knowledge 

gains b = 0.007, p = .033, 95% CI5000boot [0.002, 0.014]. Note that switch costs were not 

recoded and that higher values indicate a lower shifting ability, that is, an increase in scores 

reflects a decrease in ability. Thus, with every unit (millisecond) shifting ability decreases, 

the difference between worked examples and problem-solving increases by .007 points in the 

test. That means, the benefit of worked examples over problem-solving increases with 
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decreasing shifting ability. Simple slope analysis showed the following effects on different 

levels of shifting: M(- 1SD) = 37.88, b = -0.04, SE = 0.74; M = 183.77, b = 1.05, SE = 0.51; 

M(+ 1SD) = 329.66, b = 2.13, SE = 0.81. Please see Figure 6 for a visualization. This 

moderation effect was found in the original study as well. 

The moderation analysis including fluid intelligence as moderator showed that the 

worked example effect on knowledge gains was not contingent on levels of fluid intelligence 

b = -0.01, p = .493, 95% CI5000boot [-0.364, 1.115] (N = 114). Learners with lower and higher 

fluid intelligence benefited from worked examples over problem-solving. In the original 

study, worked examples were more beneficial for learners with lower than for learners with 

higher fluid intelligence, indicating that with increasing fluid intelligence problem-solving 

becomes more effective.  

Extension Hypotheses 

 Manipulation check. Whether learners in the condition with time pressure in fact felt 

more time pressure was tested with an independent t-Test with time pressure as independent 

and subjective time pressure as dependent variable. Learners in the time pressure condition 

subjectively felt under higher time pressure (M = 5.00, SD = 2.25) than learners in the no 

time pressure condition (M = 3.00, SD = 2.19). This difference was statistically significant 

t(229)= 6.85, p < .001, d = .9. Thus, the manipulation was successful.  

 Effect of time pressure on cognitive load (Hypothesis 1). Time pressure and 

worked examples were included in a 2-factorial ANCOVA as independent variables with 

cognitive load as dependent variable controlling for age, semester, and the QCM scales 

anxiety and challenge. Only anxiety and challenge were significant covariates. The main 

effect of time pressure on cognitive load was significant F(1,222) = 5.43, p = .021, 2 = .02, 

learners in the time pressure condition indicated higher cognitive load (M = 6.41, SD = 1.20) 

compared to learners in the no time pressure condition (M = 6.05, SD = 1.22). The main 
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effect of worked examples on cognitive load was not statistically significant F(1,222) = 1.61, 

p = .206, 2 = .01, indicating that there was no difference between worked examples and 

problem-solving in cognitive load. The interaction effect of time pressure and worked 

example was also not statistically significant F(1,222) = 0.03, p = .864, 2 < .001. This 

means, only time pressure but not the study method (worked examples vs. problem-solving) 

nor any of the study methods in combination with time pressure affected how much cognitive 

load learners experienced.  

 Three-way interaction of time pressure, working memory capacity, and worked 

examples (Hypothesis 2). A moderated moderation analysis with worked examples as 

independent variable, WMC as primary and time pressure as secondary moderator with 

knowledge acquisition as dependent variable was conducted (Figure 7). The three-way 

interaction effect was not statistically significant b = -0.85, p = .434, 95% CI5000boot [-9.113, 

7.362] (N = 226). Even when under time pressure, WMC did not moderate the worked 

example effect on knowledge acquisition. Hence, extension Hypothesis 2 did not receive 

empirical support. 

Discussion 

 We replicated Schwaighofer et al.’s (2016) study and investigated whether there are 

differences in application-oriented knowledge and in cognitive load between worked example 

study and problem-solving. All participants gained application-oriented knowledge from pre-

test to post-test, however the gains were greater for participants in the worked example than 

in the problem-solving condition. There was no difference between worked examples and 

problem-solving with respect to cognitive load. Further, we investigated moderators of the 

worked example effect. Learners with lower prior knowledge benefited from worked 

examples, whereas the benefit of worked examples over problem-solving decreased with 

increasing prior knowledge of learners. Also, worked examples were more beneficial the 
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lower a learner’s shifting ability was in comparison to problem-solving. In contrast, the 

worked example effect was not found to be contingent on levels of WMC and fluid 

intelligence; learners with lower and higher WMC or fluid intelligence similarly benefitted 

from worked examples over problem-solving. We extended Schwaighofer et al.’s study and 

included a time pressure manipulation. Participants in the time pressure condition indicated 

higher cognitive load than participants who were not under time pressure. With respect to our 

moderated moderation hypothesis, we found that even when under time pressure, worked 

examples were equally beneficial for learners with lower and higher WMC. 

We follow the suggestion of LeBel et al. (2019) on nuanced statistical language for 

interpretation of replication results in our discussion. The authors suggest to use signal-

consistent and signal-inconsistent for statistically significant replication findings. Consistent 

is used when the replication confidence interval (CI) includes the original effect size (ES) and 

inconsistent is used when the replication CI excludes the original ES. Signal-inconsistent is 

further differentiated to express whether the replication ES was larger than, smaller than, or 

in the opposite direction of the original ES. No signal-consistent and no signal-inconsistent is 

used for statistically non-significant replication findings and to indicate whether the 

replication CI includes or excludes the original ES. Unfortunately, above mentioned terms 

were also suggested to express replication results with respect to statistically non-significant 

effects in the original study (LeBel et al., 2019). To avoid confusion, we recommend no 

signal repeated – consistent and inconsistent for cases where neither the original nor the 

replication study detected an effect, with consistent indicating that the ES of the original 

study was included in the replication CI, and inconsistent indicating that the ES of the 

original study was excluded in the replication CI. Further we recommend to use no signal – 

signal (consistent or inconsistent) for cases in which effects are statistically non-significant in 

the original study, but are statistically significant in the replication study. We note that 
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consistent and inconsistent cannot be interpreted when studies report unstandardized effect 

sizes, as is the case in our study. An overview of the replication status of effects investigated 

in our study is found in Table 2 which shows an adaption of LeBel et al.’s (2019) 

categorization to our case.  

Worked Examples, Time Pressure, Knowledge Acquisition, and Cognitive Load 

 Learners who solved statistical problems with worked examples gained more 

knowledge compared to learners who solved problems without worked examples. Because 

the signal was detected consistently, we conclude that the worked example effect on 

knowledge acquisition was replicated. The worked example effect received empirical support 

in numerous studies, but mostly for well-structured and rule-based problems in domains like 

mathematics (van Gog & Rummel, 2010). Although investigated as a support tool for more 

complex skill acquisition such as argumentation (Hefter et al., 2014), worked examples had 

hardly been systematically investigated as support with respect to solving less rule-based 

problems in the domain of statistics. Worked examples effectively supported learning 

probability calculation or calculation of mean, mode, and median (Paas, 1992; Renkl, 1997), 

learning goals that require understanding rule-based operations. However, there are less 

defined problems in the domain of statistics that require knowledge of research methods and 

statistical analyses and the ability to apply this knowledge. Domain principles might be less 

straightforward, operators might be applied in relatively random order, and multiple solutions 

might be equally appropriate. Our study shows that worked examples foster application-

oriented knowledge needed to solve such problems as well.   

 As to why worked examples are more effective than problem-solving, our results do 

not support the often assumed reduced cognitive load mechanism (Sweller, 1988; van Gog & 

Rummel, 2010). There was no statistically meaningful difference in cognitive load between 

worked examples and problem-solving; neither in the original nor the replication study. Our 
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extension analysis including time pressure showed that cognitive load was higher when 

learners were under time pressure but there was no interaction effect of worked examples and 

time pressure on cognitive load. Thus, our results are less in keeping with the idea that 

reduced cognitive load explains the advantage of worked examples over problem-solving, but 

more consistent with the explanation that worked examples foster understanding of domain 

concepts (Koedinger, Corbett, & Perfetti, 2010; Renkl, 2014).  

 Although worked examples reduced cognitive load in comparison to problem-solving 

during learning (e.g., Nievelstein et al., 2010; Paas & van Merriënboer, 1994; van Gog et al., 

2006) or posttest performance (e.g., Paas, 1992) in a number of studies, we argue that it is 

more informative to know which cognitive processes the cognitive load rating of a learner 

reflects than to know how much cognitive load a learner reports. In our study for example, all 

learners invested similar amounts of mental effort, but as to which specific processes mental 

effort was invested remains unknown. We conclude that cognitive load ratings are a valid 

indicator of learner experience but these ratings do not reveal the mechanism by which 

worked examples are effective. The conclusion that it is more about the “kind” and less about 

the “quantity” of load is in line with results of other studies that found instructional effects in 

absence of differences in cognitive load (e.g., de Koning, Tabbers, Rikers, & Paas, 2010; 

Lusk & Atkinson, 2007).  

As reduced cognitive load in example study conditions was found under restricted and 

very short study times (for example 3 mins. in van Gog et al., 2006), our findings indicate 

that this might not generalize to more ill-structured and complex learning settings (de Jong, 

2010) in which realistic study materials and realistic study times are utilized. The 

subjectively rated invested mental effort might rather be indicative of how much time 

pressure, anxiety or how challenged learners felt by the task. Thus, based on our data, 

cognitive load possibly reflects metacognitive, motivational, or affective characteristics of a 
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learner (see for example Feldon, Callan, Juth, & Jeong, 2019 for a discussion of motivational 

and affective factors within cognitive load theory).  

Whether cognitive load in fact reflects load in working memory has to be assessed 

relative to an individual’s WMC (de Jong, 2010) but WMC is seldom clearly conceptualized 

and in even less studies measured (Anmarkrud, Andresen, & Bråten, 2019). Considering that 

use of WMC is assumed to be a function of prior knowledge (Sweller, 1988), cognitive load 

should be assessed relative to WMC and prior knowledge. As put in 1988 “any potential 

measure [of cognitive load] must be capable of simultaneously accounting for problem 

difficulty, subject knowledge, and strategy used” (Sweller, 1988, p. 263). It seems such a 

measure (still) does not yet exist (Anmarkrud et al., 2019). However, a question to be 

addressed in the future is whether such a measure, if it can be developed, provides the 

answers that we are seeking. Namely, whether it reveals the cognitive processes meaningful 

for learning and whether the amount of cognitive load or mental effort matters as long as 

learners engage in meaningful learning processes.  

Prior Knowledge Moderation 

 Prior research indicates an aptitude-treatment interaction of worked examples and 

prior knowledge. Worked examples are helpful when prior knowledge is low but detrimental 

when prior knowledge is high (Kalyuga, 2007). Results of the replication align with prior 

research but stand in contrast to results of the original study. This can be categorized as a no 

signal-signal (consistent) scenario as the original study’s effect was in the same direction as 

the replication study’s effect. The assumed reason for the unexpected null finding in the 

original study was the very low variability in prior knowledge of the sample (Schwaighofer et 

al., 2016). We conclude that worked examples support learners with lower prior knowledge 

to construct internal representations but interfere with the use of already constructed internal 

representations in learners with higher prior knowledge (Atkinson et al., 2000; Kalyuga, 
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2007) as our findings align with previous research and because the authors of the original 

study offered a reasonable explanation for why their results differed from the expectation.  

Executive Functions and Fluid Intelligence Moderations 

 Worked examples were hypothesized to be more effective for learners with lower 

WMC than for learners with higher WMC but neither the original nor the replication study 

provided empirical support (no-signal repeated replication scenario). Even when learners 

were under time pressure, a scenario in which demands on WMC should become unavoidable 

and individual differences should become visible, learners with lower and higher memory 

capacity benefited equally from worked examples over problem-solving.  

 While the results of only the original study were inconclusive with respect to whether 

WMC moderates the worked example effect, the repeated null finding and lack of support for 

the alternative time pressure explanation together increase confidence in the conclusion that 

individual differences in WMC do not noticeably influence the worked example effect. This 

pattern of findings does not support van Gog and Rummel’s (2010) proposition of differential 

WMC effects. It rather aligns with the assumption of cognitive load theory that individual 

differences in WMC do not matter as all learners, including those with relatively high WMC, 

have insufficient processing capacity when dealing with complex materials (Paas & Sweller, 

2014). It follows that in these cases, learners with higher WMC should also benefit from 

instructional support such as worked examples. Further, cognitive load theory has always 

stressed the important link of WMC and prior knowledge. More expert learners can retrieve 

multiple elements as one piece of information and thus utilize limited capacity much more 

efficiently (Sweller, 1988; Sweller et al., 2019). This is also supported by research showing 

that expertise in a domain allows for more efficient processing through use of the so called 

long-term working memory (Ericsson & Kintsch, 1995). Thus, individual differences in 

WMC might also be rendered meaningless for learning in contexts in which knowledge is 
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required or helps to solve tasks. 

 As both the original and our replication study indicate (signal-consistent replication 

scenario), the benefit of worked examples over problem-solving decreases with increasing 

shifting ability. Learners had to switch between different information sources but also 

between encoding and applying information to solve the problems in both studies. Because 

the worked example integrated relevant information and provided a step-wise solution 

procedure, we assume that demands on learners’ shifting ability were reduced. Due to the 

need of reconfiguration to a previous mental state (Rogers & Monsell, 1995) and of actively 

disengaging from the currently active but no longer relevant mental state (Alport et al., 1994), 

task shifting comes at a cost. Although van Gog and Rummel’s (2010) assumption of 

influential individual differences did not apply, in our study, to WMC, it instead seems to 

apply to the cognitive function of shifting. Worked examples apparently aptly fit to learners 

with lower shifting ability because their design provides support for reconfiguration of the 

cognitive system and disengagement from previous mental sets. Learners with higher shifting 

ability can effectively engage in these cognitive processes; they thus do not experience high 

shifting costs and consequently their learning during problem-solving is not impaired.  

These findings expand our knowledge about how shifting influences the effectiveness 

of instruction and underpins the importance of this ability for learning, for which past 

research has already provided correlational evidence (Yeniad et al., 2013). Aligned with the 

suggestion of “a more dynamic and multidimensional approach to understanding working 

memory” (Sepp et al., 2019, p. 2), we propose that instructional theory will benefit from a 

broader view on cognitive architecture. Beyond greater consideration of task shifting, 

specifically looking deeper into how different cognitive components interact seems, based on 

our research, promising for advancing instructional theory. Inevitably in complex learning, 

learners face their WMC constraints and compensate for these by utilizing other cognitive 
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functions. Namely, our limited WMC makes shifting between different elements 

unavoidable. Those learners who are better at shifting between different elements in the 

material or between different mental actions would be expected to rely less on instructional 

support than those who are not as good at shifting (Schwaighofer et al., 2016). Interesting in 

this respect is also whether task shifting might be less tied to prior knowledge than WMC 

seems to be. While there are evidence and long-standing theoretical considerations that the 

use of one’s WMC is inherently tied to prior knowledge (Ericsson & Kintsch, 1995; Paas & 

Sweller, 2014; Sweller, 1988; Sweller et al., 2019), we do not know of investigations or 

theoretical considerations that support a similar relationship of shifting ability and prior 

knowledge. In fact, Baddeley’s working memory model, on which cognitive load theory is 

based, assumes the central executive to be a domain-general attentional control mechanism 

whose sub-processes are capacity to focus attention, dividing attention, and: switching 

attention (Baddeley, 1992, 2000; Baddeley, 2002). It would be informing to investigate if this 

attentional system operates independently of prior knowledge or whether schemas in long-

term memory are actually involved in steering attentional resources.   

 With respect to the moderating role of fluid intelligence, we did not detect a signal 

where the original study detected a signal, a signal-inconsistent scenario. The original study 

found that the benefit of worked examples over problem-solving decreased with increasing 

fluid intelligence to eventually reverse (Schwaighofer et al., 2016), which is in line with 

earlier research on aptitude-treatment interactions (Snow & Lohman, 1984). We found that 

worked examples were more effective than problem-solving irrespective of fluid intelligence. 

Worked examples integrate relevant information, link concepts and problem information, and 

present all of this in a condensed form to the learner, thus reduce the reasoning demands. 

Schwaighofer et al. (2016) argued that with the worked example present, learners with lower 

fluid intelligence were better equipped to understand what information from the text book 
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materials were relevant. Learners with higher fluid intelligence were able to reason with the 

text book material even without the help of the worked example. However, not only was 

reasoning required to solve the statistical problems but also knowledge. The worked 

examples in our study might have helped to construct the needed knowledge and thus were 

effective for learners with lower and higher fluid intelligence equally. The inconsistent 

findings leave us to conclude that either explanation might hold and that future research is 

needed to determine which will persist. Future studies may further systematically investigate 

if intelligence differentially affects learning on different levels of prior knowledge (Leutner, 

2002). 

Limitations 

The original and replication study differ in certain aspects from classical worked 

example studies. Typically, worked example studies use example-problem pairs (Sweller, 

1988) and instructional input precedes worked example study or problem-solving (Renkl, 

2014). In contrast, we used six problems subsequently in the intervention phase and 

instructional materials were not presented before worked example study or problem-solving 

but were accessible throughout the learning phase. Although it is unlikely that these 

differences to other studies selectively contributed to the absence of the hypothesized effects 

regarding WMC or cognitive load while not leading to the absence of the hypothesized 

worked example or shifting moderation effect, we suggest that future research utilizes a 

typical worked example study format.  

Regarding our sample characteristics, the replication study’s sample included a higher 

variety of study programs than the original study’s sample. However, low variability in prior 

knowledge was the assumed reason why the prior knowledge moderation was not found in 

the original study, therefore we intentionally employed a sample with potentially higher 

variability in prior knowledge. 
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The reliability of the automated operation, symmetry, and reading span was relatively 

low which might be a reason why a WMC moderation effect was not detected. However, the 

reliabilities of all three tasks were high in the original study where this effect was also not 

found, which is why we do not consider the low reliability in our study as a likely cause for 

the absence of the WMC moderation. 

Part of the theoretical explanation of the shifting moderation was our interpretation 

that learners shift less between problem and learning materials in worked example study 

compared to problem-solving. This could be further substantiated by analyzing log-data that 

provide insight into how learners specifically navigate between learning materials and 

whether moves between different sources are more frequent in problem-solving than worked 

example study. Unfortunately, our study does not provide these kind of data as it was 

conducted in paper-pencil format and future research is needed to follow-up on our 

interpretation.  

Future Research 

We suggest to investigate all four moderators of our study in a) different domains, b) 

with different kinds of instructional support, and c) with different samples to increase the 

credibility of the effects we have found. Studies placed in real world learning environments 

such as classrooms would inform us whether the observed effects hold beyond the authentic 

but still rather lab-based setting we used in our study. It would be of merit to include 

inhibition in such investigations as the ability to stay focused and deliberately suppress 

distractors (Miyake et al., 2000) seems an especially important feature of cognitive 

architecture within classroom settings. As it is fairly well established that executive functions 

are rather stable (Schwaighofer, Fischer, & Bühner, 2015), it would be worth investigating 

whether training the “entire set” of executive functions through operating at the limits of a 

learners cognitive capacities is possible (Schwaighofer, Bühner, & Fischer, 2017; 
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Schwaighofer et al., 2015). If executive functions are malleable through taxing their 

interplay, such training could be integrated within authentic learning experiences by ensuring 

that the complexity of the learning task challenges a learner’s cognitive functioning 

adaptively, always operating at the learner’s limits. Even if this would not yield improved 

single cognitive functions, it might improve a learner’s ability to flexibly use all available 

cognitive functions.  

Our results emphasize that aligning design of instruction with individual learner needs 

is desirable but it calls for more customized instruction which is challenging on many levels. 

As intelligent tutoring systems for example have already shown success in tailoring 

instruction to individual learner needs (Graesser, Hu, & Sottilare, 2018), future research 

could utilize technology more systematically to design instruction that is aligned with human 

cognitive architecture as well as flexible in adapting to different “inner” environments of 

learners.   

 Investigating the interplay of cognitive functions will certainly result in an even more 

adequate description of human cognitive architecture. This includes investigating how for 

example WMC and shifting ability interact, but also how these functions can be utilized by 

learners with different levels of prior knowledge. Domain-specific measures that capture this 

relation would provide deeper insight into this assumed interplay. As it is already difficult to 

assess general cognitive functions in their purest form (task-impurity problem, Miyake & 

Friedman, 2012), development of such measures should not be underestimated.  

 While instructional theory has built on cognitive psychology and used 

conceptualizations of cognitive architecture to understand and explain instruction and 

learning, not all aspects of cognitive architecture were integrated in instructional theory nor 

was instructional theory always adapted to updated cognitive models. For example, the 

central executive of Baddeley’s model is barely mentioned in cognitive load theory (Schüler, 
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Scheiter, & van Genuchten, 2011). Current advances in instructional theory suggest a 

domain-general attentional resource (Sepp et al., 2019) which taken together with our 

findings pinpoint shifting ability as a crucial factor in instructionally supported learning, 

especially if this ability would turn out to be rather independent of prior knowledge. Thus, 

future research that incorporates so far unattended parts of recent cognitive models enables 

more precise instructional design implications. Moreover, cross-checking instructional theory 

against different cognitive, specifically working memory models, (Schüler et al., 2011) may 

contribute to further understand how current models of cognitive architecture look like and 

what they imply for learning and instruction. As multiple, partially conflicting, models of 

cognitive architecture exist and continue to develop (for example, Conway, Cowan, Bunting, 

Therriault, & Minkoff, 2002; Cowan, 2001; Engle, Tuholski, Laughlin, & Conway, 1999; 

Himi, Bühner, Schwaighofer, Klapetek, & Hilbert, 2019; Miyake et al., 2000; Oberauer & 

Kliegl, 2006; Oberauer, Süß, Wilhelm, & Wittman, 2003), instructional theory has to 

continuously explore and possibly integrate the of advances in cognitive psychology (Schüler 

et al., 2011) 

Conclusion 

The original and our replication study used objective measures to assess WMC, 

shifting ability, and fluid intelligence, and expanded knowledge about factors that influence 

instructional effectiveness beyond prior knowledge. Our results showed that inter-individual 

differences in WMC are, if at all, marginally relevant for instructionally supported learning 

and that in complex learning learners with lower and higher WMC benefit from worked 

examples over problem-solving alike. Further, we showed that task shifting is another 

important component of cognitive architecture that matters for effective instruction. 

Compared to WMC, task shifting might be less dependent on knowledge in long-term 

memory. We conclude that adopting a more comprehensive view on cognitive architecture 
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will advance our knowledge on how, why, and for whom which instructional support works. 

More detailed knowledge about compound effects will enable us to design more customized 

instruction and potentially more effective learning experiences.   
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Tables 

Table 1 

Sample characteristics   

 N MAge (SD) Women Men Semester Range 

Replication  115 23.34 5.03 86% 14% 11 

Extension 116 22.38 3.43 88% 12% 11 

Full Sample 231 22.40 4.33 87% 13% 11 

 

 

Table 2 

Overview of original and replication effects using nuanced language 

 Support of hypothesis?  

Hypothesis Original 

Study 

Replication 

Study 

Replication Status of 

Effect 

1. Effect of worked examples on 

application-oriented knowledge 

acquisition 

+ + Signal – consistent 

2. Effect of worked examples on 

cognitive load 
- - No signal – repeated 

3. Moderating role of prior knowledge - + No signal – signal 

4. a. Moderating role of WMC* - - No signal – repeated 

4. b. Moderating role of shifting + + Signal – (consistent) 

4. c. Moderating role of fluid 

intelligence 
+ - No signal – (consistent) 

Note. * Working memory capacity. We reported unstandardized effect sizes for moderation analyses, which 

has to be considered when interpreting “consistent” and “inconsistent” as proposed by LeBel and colleagues 

(2019). We thus refrained from categorizing consistent and inconsistent. We used (consistent) for moderation 

analyses with shifting and fluid intelligence to indicate that the effects were in the same direction. 
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Figures 

 
Figure 1. Example of material: first of six statistical problems that had to be solved during the intervention 

(translated from German).  

 

 

Figure 2. First of three worked example slides showing the problem, the solution step and the solution. 

Shown is step 1: linking the concepts of independent and dependent variable to problem information 

including scale level of variables. Application of textbook material on design to the specific case of the 

problem (translated from German). 

 

 



EXECUTIVE FUNCTIONS AND LEARNING – A REPLICATION 50

 

Figure 3. Example of item 1 in pre-and posttest. Short problem description with three sub-questions to be 

answered that align with the solution steps of the worked example. No distracting information is given in 

contrast to the practice problems during the learning phase (translated from German).  

 

 
Figure 4. Graphical representation of interaction effect between instructional treatment and time of 

measurement. All participants improved significantly from pre-to posttest, however, the increase was 

significantly larger in the condition with worked examples. Thus, worked examples were more effective than 

problem-solving in this sample.  

 

3,5

4,5

5,5

6,5

7,5

8,5

9,5

Pretest Posttest

K
n
o
w

le
d
g
e 

G
ai

n
s 

 

Time of Measurement

Interaction Effect of ANOVA with Repeated Measures

Worked example

Problem solving



EXECUTIVE FUNCTIONS AND LEARNING – A REPLICATION 51

 
Figure 5. Graphical representation of interaction effect between worked examples and prior knowledge. The 

effect of worked examples on knowledge gains for three values of the moderator (mean, +/- one SD) are 

shown to indicate the trend of the moderation. 

 

 

 
Figure 6. Graphical representation of interaction effect between worked examples and shifting ability. The 

effect of worked examples on knowledge gains for three values of the moderator (mean, +/- one SD) are 

shown to indicate the trend of the moderation. Please note that higher shifting values indicate lower shifting 

ability.  
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Figure 7. Worked examples vs. problem-solving is the independent, working memory capacity (WMC) the 

primary, time pressure (with vs. without) the secondary moderator, and application-oriented knowledge gains 

the dependent variable in this moderated moderation model. Tested was the assumption that WMC only 

moderates the worked example effect on knowledge acquisition if learners are under time pressure. 
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Appendix A  

Table A1 

Example Items for Subscales of the Questionnaire of Current Motivation 

Sub-scale Example Item 

Interest “I would solve such tasks in my spare time.” 

Challenge “The task is a real challenge for me.” 

Probability of success “I think I will not manage to solve this task.” 

Anxiety “When I think about this task, I get worried.” 

Note. Translation from German to English by first author. 

 

Table A2  

Questionnaire of Current Motivation Subscale Reliabilities  

Subscale Cronbach’s Alpha Number of Items N 

Interest .81 5 231 

Challenge .57 4 231 

Probability of success .73 4 231 

Anxiety .86 5 231 
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Appendix B 

Table B1 

Descriptive statistics of moderating and dependent variables in the replication condition  

Variable Mean SD N 

Prior knowledge 4.31  2.72 115 

Posttest knowledge 8.291 3.56 115 

Knowledge gains 4.01  2.78 115 

Working memory capacity .692  .14 114 

Shifting  183.773  145.89 115 

Fluid intelligence .264 .82 115 

Cognitive load 6.055 1.22 115 

Note. Metrics: 1 Points in the knowledge test. 2 Mean score of proportion of correctly recalled items in 

operation, reading, and symmetry span. 3 Reaction times in milliseconds. 4 Composite score for fluid 

intelligence based on the testing software. 5 Subjective rating on Likert-Scale. 

 

Table B2   

Descriptive statistics for knowledge and cognitive load measures by experimental 

condition  

 Worked Examples  Problem-Solving 

 Mean SD  Mean SD 

Prior knowledge 4.01 2.39  4.75 3.00 

Posttest knowledge 8.41 2.94  8.16 4.11 

Knowledge gains 4.40 2.74  3.59 2.78 

Cognitive load 6.00 1.27  6.11 1.18 

Note. Worked example condition n1 = 57, problem-solving condition n2 = 58; total N = 115 in 

replication sample. Prior and posttest knowledge min. = 0, max. = 26 points. Cognitive load was 

indicated on a scale from 0-9 from very, very low mental effort (1) to very, very high mental effort 

(9). 

 

 

 

 

 

 

 

 

 


