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Testing fit patterns with polynomial regression models
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Fit hypotheses, also labeled ‘congruence’, ‘discrepancy’, or ‘congruity’ hypotheses, contain the
notion that an outcome is optimal when two predictor variables match well, while incongruent/
discrepant combinations of the predictors lead to a suboptimal outcome. Previous statistical
frameworks for analyzing fit hypotheses emphasized the necessity of commensurable scales,
which means that both predictors must be measured on the same content dimension and on
the same numerical scale. In some research areas, however, it is impossible to achieve scale
equivalence, because the predictors have to be measured with different methods, such as ex-
plicit attitudes (e.g., questionnaires) and implicit attitudes (e.g., reaction time task). In this
paper, I differentiate numerical congruence from fit patterns, a concept that does not depend
on the notion of commensurability, and hence can be applied to fit hypotheses with incom-
mensurable scales. Polynomial regression can be used to test for the presence of a fit pattern
in empirical data. I propose several new regression models for testing fit patterns which are
statistically simpler and conceptually more meaningful than a full polynomial model. An R
package is introduced which provides user-friendly functions for the computation, visualiza-
tion, and model comparison of several fit patterns. An empirical example on implicit/explicit
motive fit demonstrates the usage of the new methods.
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Many psychological theories maintain the notion that the
congruence (also called fit, match, correspondence, similar-
ity, or discrepancy1) between two constructs has an effect on
some outcome variable. One example is flow theory (Csik-
szentmihalyi, 1975), which maintains that one condition for
flow experiences is an optimal challenge, which is defined
as a situation where the perceived ability of the person fits
the task difficulty. The optimal challenge can be opera-
tionalized with a discrepancy score between task difficulty
and a person’s ability (e.g., Abuhamdeh & Csikszentmihalyi,
2009), where deviations into both directions should hinder
flow experiences. Similar examples can be drawn from di-
verse fields of psychological research. For example, discrep-
ancies between explicit and implicit attitudes predict disso-
nance reduction behavior (Briñol, Petty, & Wheeler, 2006),
discrepancies between implicit and explicit self-concept pre-
dict scores in intelligence tests (Dislich et al., 2012), dis-
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crepancies between explicit and implicit self-esteem pre-
dict well-being (Schröder-Abé, Rudolph, & Schütz, 2007),
and discrepancies between implicit and explicit motives pre-
dict well-being (e.g., Hofer & Chasiotis, 2003), psychoso-
matic symptoms (Baumann, Kaschel, & Kuhl, 2005), or re-
lationship satisfaction and stability of couples (Hagemeyer,
Neberich, Asendorpf, & Neyer, 2013). Furthermore, whole
theories are built on the notion of optimal fit, like person-
environment fit theory (Kristof-Brown & Billsberry, 2013)
or regulatory fit theory (Higgins, 2000).

These examples document the widespread use of fit hy-
potheses. Several studies operationalize these hypotheses
with an absolute or squared difference of the predictor vari-
ables. This approach, however, is challenged by theoretical
considerations which state that for the operationalization of
fit hypotheses it is necessary that both measures are com-
mensurable (Edwards, 2002). The principle of commensu-
rability, also known as ‘dimensional homogeneity’, states
that if two quantities should be compared, added, or sub-
tracted, they must be on the same content dimension (‘nom-
inal equivalence’, Edwards & Shipp, 2007). For example,
it does not make sense to subtract 2.1 meters from 0.6 kilo-
grams. Furthermore, both measures must be assessed on the

1For clarification, the term ‘discrepancy’ here is used for undi-
rected (aka. non-directional) difference measures (i.e., absolute dif-
ferences |X −Y | or squared differences (X −Y)2). This paper is only
concerned with squared differences as predictors, not with squared
differences as outcomes (cf., Edwards, 1995).
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same metric (‘scale equivalence’). Two weights (which have
the same content dimension) cannot be directly compared
when they are assessed on different scales like pounds and
kilograms. Nominal equivalence is a logical precondition
for scale equivalence: When scales measure different con-
structs, scale equivalence cannot be meaningfully defined.
These theoretical considerations led to the conclusion that
‘[c]ommensurate dimensions are required for the conceptu-
alization and measurement of P-E [person-environment] fit
[...]. Without commensurate dimensions, it is impossible to
determine the proximity of the person and environment to
one another, and the notion of P-E fit becomes meaningless.’
(Edwards, Caplan, & Harrison, 1998, p. 31).

Commensurable scales typically are achieved by using the
same response scale with different item stems, for example
‘How much money do you actually earn?’ and ‘How much
money would you like to earn?’ (Edwards & Shipp, 2007).
In practice, however, the actual degree of commensurability
can be hard to determine as the different item stems might in-
duce response biases, or differential item functioning might
bias the meaning of the item when, for example, wifes and
husbands are compared on the same item (see also Kristof,
1996). Moreover, and central to this paper, in some research
areas it is impossible to achieve scale equivalence, because
the predictors have to be measured with different methods. In
fact, all of the studies described in the first paragraph com-
pared incommensurable scales, such as reaction time tasks
with Likert scales.

But if we cannot subtract kilograms from kilometers, how
can we subtract milliseconds in a reaction time task from
points on a Likert scale? These constructs are on inher-
ently different measurement scales.2 At first view, it seems
that in the case of implicit/explicit attitude discrepancies and
comparable situations the precondition of commensurability
poses an insurmountable challenge. But is it really a com-
pelling consequence that in these cases the notion of congru-
ence ‘becomes meaningless’?

In this paper, I propose an appropach that allows to test
a certain type of fit hypotheses with incommensurable mea-
sures by differentiating numerical congruence from fit pat-
terns. New statistical models based on polynomial regression
provide a tool for describing and testing these fit patterns in
empirical data. As will be shown, this approach does not rely
on the commensurability of predictor variables. The relax-
ation of the commensurability precondition, however, comes
at the cost that it is not possible to test several specific hy-
potheses, which could be tested with commensurable scales.

The paper is organized as follows. In the first part, nu-
merical congruence and fit patterns are differentiated, two
concepts which are sometimes mixed up. In the second
part, conceptual and statistical problems of squared differ-
ence scores are discussed and related to polynomial regres-
sion, which provides an analytical framework within which

both the problems and the solutions can be localized. The
third part introduces new statistical models based on polyno-
mial regression, which overcome the identified problems and
allow to test fit patterns with incommensurable measures.
Fourth, an empirical example demonstrates how to employ
and interpret the new models. Finally, the limitations and
implications of the proposed techniques are discussed.

Numerical Congruence vs. Fit Patterns

Science is communicated through verbal definitions, and
problems arise when different scientific communities use the
same label for different underlying constructs (e.g., Hmel &
Pincus, 2002). Such a situation is present in the psychologi-
cal literature concerning the term congruence (resp. fit, cor-
respondence, discrepancy, congruity, or contingency), which
refers to at least two different constructs. Henceforward, I
will differentiate these two constructs as numerical congru-
ence and fit patterns.

Numerical Congruence

It has been argued, probably most pronounced in the re-
search tradition on person-environment fit, that the predic-
tor variables must be commensurable in order to derive an
meaningful quantification of the congruence between them
(e.g. Bauer & Hussong, 2009; Caplan, 1987; Edwards, 2002;
Edwards et al., 1998). For example, one could ask employ-
ees about the desired and the actual travel times in their job:
‘How many days per months you want to travel?’ (desired)
and ‘How many days per month do you actually travel?’ (ac-
tual; cf. Edwards, 2002). A numerical comparison of these
two quantities is directly possible: Employees with a perfect
match (desired equals actual) are congruent, and increasing
deviations mean increasing incongruence. As this notion of
congruence is closely tied to the actual measurement scale
on which the variables are located, henceforward I will call it
numerical congruence. Numerical congruence requires both
nominal and scale equivalence.

Fit Patterns

Other strands of psychology, however, conceive of con-
gruence in a more abstract and conceptual way. For exam-
ple, in client-centered therapy (Rogers, 2004) the term con-
gruence is used for a good fit between the real, the perceived,
and the ideal self. According to Rogers, during the process

2Of course, it could be debated whether, for example, implicit
and explicit attitudes can be located on a common latent content
dimension. In this case, we would have nominal equivalence, but
still no scale equivalence (i.e., we would measure the same thing,
but we only have a ‘yard stick’ for one predictor and a ‘meter stick’
for the other).
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of therapy the ‘concept of self becomes increasingly congru-
ent with his experience’ (Rogers, 1959, p. 205). In a com-
parable way, D. C. McClelland, Koestner, and Weinberger
(1989) theorized about the congruence between implicit and
explicit motives: ‘We are all familiar with individuals who
express a desire to act in a certain way but seem unable to
do so consistently. That is, their self-attributed and implicit
motives are discordant. [...] We also believe [...] that through
self-observation and analysis, greater congruence between
the two types of motives can be achieved’ (p. 700). Another
example is the congruence of verbal and non-verbal commu-
nication (e.g., Johnson, McCarty, & Allen, 1976; Mongrain
& Vettese, 2003), where the verbal and the non-verbal chan-
nel can be more or less congruent. As a simplified exam-
ple, if someone tells a serious or even sad fact (verbal chan-
nel), then only a low amount of smiling (non-verbal channel)
is appropriate. If someone tells a somewhat funny thing, a
medium amount of smiling is appropriate. If someone tells
somethings really funny, bursting out in laughter is appropri-
ate. A theory could predict that there is a certain intensity
of smiling/laughing that ‘fits’ to the funniness of the verbal
content. Both smiling more than the optimal combination
and smiling less wouldn’t be perceived as appropriate.

These researchers have an conceptualization of congru-
ence that does not presume commensurable scales. In fact, in
none of the examples the components of congruence can be
measured on the same dimension. Still a falsifiable hypoth-
esis can be posed that relates combinations of the predictor
variables to an outcome variable, such as ‘Too much and too
less smiling is perceived as inappropriate’. Henceforward, I
will call such patterns fit patterns.

A Formal Definition of Fit Patterns

The fit pattern is defined around two basic notions: First,
a fit pattern is about an optimal match between the levels of
two variables. For each level of X exists a matching level of
Y which leads to an optimal response Z, and vice versa. Sec-
ond, any deviation from these optimal combinations leads to
suboptimal responses, where bigger deviations have a higher
impact on the response variable than smaller deviations.

Described more formally, a weak and a strong version of
the fit pattern can defined by four, respectively, five condi-
tions3. For a weak fit pattern, the following four conditions
must be satisfied:
First, for each value Xi exists a single value Yopt.i which
maximizes a response variable Z. Second, for each Y j ex-
ists a single value Xopt. j which maximizes Z. Third, for all
Y ∈ [Ymin; Yopt.i] and X = Xi, Z is a monotonically rising
function of Y, for all Y ∈ [Yopt.i; Ymax] and X = Xi, Z is a
monotonically falling function of Y (i.e., greater deviations
of Y from Yopt.i lead to equal or greater reductions in Z).
Fourth, in exactly the same way, for all Y j is Z a monotoni-
cally rising (resp. falling) function with Xopt. j as the vertex.

For a strong fit pattern, additionally the following condi-
tion must be satisfied:
Fifth, the relationship between optimal matching values must
be symmetric: If Xi is the optimal value for Y j, then Y j must
be the optimal value for Xi.

These definitions of weak and strong fit patterns do not
entail the necessity of scale equivalence of X and Y . The
predictor values are not directly compared, but rather their
joint impact in the prediction of Z is investigated. Hence, in
the example of implicit/explicit attitude discrepancy, it would
not be valid to say ‘30 ms in an implicit reaction time task
equal 1.4 points on an explicit Likert scale’ (which would
assume scale equivalence). But one could say: ‘Increasing
the implicit attitude by 30 ms has the same impact on dis-
sonance reduction efforts as reducing the explicit attitude by
1.4 Likert points’ (for a similar argument about comparing
the impact of incommensurable stimulus features, see Huang
& Pashler, 2005).

Numerical congruence is logically independent from the
notion of optimality or "optimal fit". The amount of nu-
merical congruence of two variables is only determined by
their standing on the same scale. Whether the amount of
congruence furthermore is related to a maximization or min-
imization of an outcome variable is an independent question.
Fit patterns, in contrast, have an inherent evaluative quality.
They are only defined in relation to the optimization of an
outcome variable. Hence, fit patterns can be seen as a subset
of the broader concept of functional optimization. However,
not every functional optimization would satisfy the condi-
tions of a ‘fit pattern’. A model with two positive linear ef-
fects, for example, has an optimum at the highest level of
both predictors, but it would not be a fit pattern according to
the definition given above.

How can the presence of a fit pattern in a data set be de-
tected? In the following sections it will be shown that dis-
crepancy scores are not a generally valid approach to inves-
tigate fit patterns.

Squared Difference Scores Are Implicit Constraints of a
Polynomial Regression

The shortcomings of difference and discrepancy scores
have been repeatedly pointed out (for an overview and de-
tailed discussion, see Edwards, 1994; Johns, 1981; Peter,
Churchill, & Brown, 1993). In the following sections, I want
to focus on two specific problems, dimensional reduction
and scaling dependence. These problems can be framed as
untested constraints. The next sections describe these con-
straints, and how a violation of them can result in a loss of
information and statistical power.

3For simplicity of reading, all patterns are formulated as maxi-
mization patterns. The definitions can also be flipped for minimiz-
ing a response.
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Expanding a Squared Difference

Several authors have pointed out that models with (di-
rected) difference scores can be expressed as a constrained
multiple regression (e.g., Cronbach & Furby, 1970; Griffin,
Murray, & Gonzalez, 1999; Johns, 1981). In a similar man-
ner, when squared difference scores D = (X−Y)2 are used as
a predictor in a regression model, the equation can be rewrit-
ten as (Edwards, 2002):

Z = c0 + c1(X − Y)2 + e (1)

Henceforward, this model will be called the basic squared
difference (SQD) model. Expanding the equation yields:

Z = c0 + c1X2 − 2c1XY + c1Y2 + e (2)

The regression weights of X2 and Y2 are constrained to
have the same magnitude and the same sign, and the in-
teraction term XY has two times the reversed weight. Re-
moving these constraints and adding all lower order terms to
the equation leads to the general two-variable second-degree
polynomial model:

Z = b0 + b1X + b2Y + b3X2 + b4XY + b5Y2 + e (3)

Note that throughout the paper the identifiers c j ( j = 0, ...,
5) are used for regression weights of constrained models and
b j for unconstrained models. In comparison to model (3), the
following constraints are imposed by the SQD model (2): (1)
b1 = 0, (2) b2 = 0, (3) b3 = b5, and (4) b4 = −2b5.

The basic SQD model is insensitive to the level on which
numerical (in)congruence takes place (for example, (2 − 1)2

equals (10 − 9)2). Hence, any regression which only con-
tains discrepancy scores (but not the main effects) implicitly
assumes that the mean level effect is zero. (Algebraically,
this is implied by the first two constraints of the SQD model,
b1 = b2 = 0).

Fitting a full polynomial model to the data removes the
implicit constraints of a squared difference score. However,
two challenges are introduced by expanding the constrained
squared difference equation to a full polynomial model.

Challenge 1: Polynomial Regression Results Can be Hard
to Interpret

The first challenge of a polynomial regression is that re-
sults can be hard to interpret. Consider the example of de-
sired (DES) and actual (ACT) amount of traveling (Edwards,
2002). Theories of person-environment fit predict that devi-
ations from the ideal amount of traveling (too much and too
less) lead to a reduced job satisfaction (SAT). Fitting a full
polynomial model to the data of 366 MBA students led to
the following result (Edwards, 2002, p. 373):

S AT = b0 + 0.247 ∗ ACT − 0.131 ∗ DES − 0.130 ∗ ACT 2

+ 0.231 ∗ ACT ∗ DES − 0.104 ∗ DES 2

(4)

Does this result present evidence for a fit pattern or not?
Interpreting these raw coefficients can be very difficult, and
one might have problems to disentangle the unique and joint
effects of the terms on the dependent variable in order to give
a judgement about the fit hypothesis.

A practical solution for an easier interpretation is to plot
the regression result as a response surface (e.g., Edwards,
2002; Myers, Montgomery, & Fitzgerald, 2009). In this plot,
for each combination of predictor values on the X-Y-plane
the predicted value of the response variable is plotted on the
z axis, resulting in a three-dimensional response surface (see
Figure 1). Alternatively to a three-dimensional plot, the val-
ues of the response variable can be displayed in different col-
ors or as height lines in a contour plot (see Figure 4B).

From the plots of Figure 1 it is evident that numerical
congruence is not a single point, but rather the line on the
X-Y plane where X equals Y (line of numerical congruence,
LOC4). A second important line is the line of numerical in-
congruence (LOIC), where X = -Y . This line is orthogonal
to the LOC and intersects at the origin (X=0, Y=0).

Figure 1C provides the plot corresponding to regression
equation (4). Now the interpretation is intuitive and straight-
forward: Congruent values of actual and desired travel time
around the LOC have the highest satisfaction value, and in-
creasing incongruence goes along with decreasing satisfac-
tion. At this stage of analysis the pattern has not yet been
tested for significance, but the plot clearly suggests a fit pat-
tern.

Additionally to plotting, specific lines on the surface can
be described numerically (Edwards & Parry, 1993; Edwards,
2002). Most importantly, the presence of a numerical con-
gruence effect can be tested via the curvature along the LOIC,
which is b3 − b4 + b5. This quantity has been termed a4
(Shanock, Baran, Gentry, Pattison, & Heggestad, 2010) and
I will also use this label here. If predictors are commensu-
rable, it has been argued that one can speak of a fit effect
when a4 is significant (Edwards & Cable, 2009).

Challenge 2: Increased Model Complexity Can Lead to
Overfitting

The second challenge of the full polynomial model is the
risk of overfitting the data – after all a model with one de-
gree of freedom (basic squared differences) has been ex-
panded to a model with five degrees of freedom. In fact, a

4For incommensurable scales, I use the term ‘line of numerical
congruence’ to refer to the diagonal of the predictor space. At this
line, predictors have the same numeric value, but this cannot be
interpreted as ‘semantic congruence’.
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meta-analysis of 30 studies on person-environment fit (Yang,
Levine, Smith, Ispas, & Rossi, 2008) investigated the in-
cremental predictive validity of the non-linear terms, and
showed that in many cases there was no gain beyond the sim-
ple linear terms X and Y . This suggests that we often might
find overfitting in polynomial regression studies.

The Problem of Scale Dependence

Using polynomial regression as a framework, one problem
of incommensurable scales can be analyzed more systemati-
cally. Many, if not most measures in psychology have arbi-
trary metrics without a natural zero point and spread (Blan-
ton & Jaccard, 2006a). Simple and arbitrary operations, for
example recoding a Likert scale from 1-5 to 0-4, or by stan-
dardizing at the population mean instead of the sample mean,
can move the numerical zero point to virtually any position.
If predictor variables are incommensurable, one of both can
be rescaled without having a common anchor for both pre-
dictor scales. As will be shown, rescaling one predictor has
only few consequences for unconstrained regression models,
but a large impact on basic SQD models.

Rescaling predictors in an unconstrained polynomial
regression. From an algebraic point of view, recentering
or rescaling predictors in an unconstrained polynomial re-
gression by additive shifts or multiplicative scaling factors is
rather meaningless (J. Cohen, 1978; Dalal & Zickar, 2012).
The essential statistics of the simultaneous model are invari-
ant under linear transformations: R2, the F and p value for
the overall model, the estimated outcome values Ẑ, the pro-
portion of variance in Z that is accounted for by X, Y , the
interaction, or the squared terms, and the t and p values of
the higher order terms. The regression weights for higher
order terms in the polynomial model are not invariant, but
their changes simply reflect the new scaling (i.e., the correla-
tion with their untransformed counterparts is 1). Hence, the
plotted response surface for rescaled predictors is exactly the
same, only that the scales on the x and y axes are shifted and
stretched. Another conclusion is that the choice of the center
does not impact the statistical power to detect higher order
effects.

The only parameters of a polynomial regression that are
not invariant to rescaling are b1 and b2. Large changes in
regression weights and their associated t and p values can
occur. For the interpretation of these parameters it is recom-
mended to center the predictors on a meaningful zero point
before conducting an RSA (Aiken & West, 1991).

Rescaling predictors in the constrained squared differ-
ence model. What effect has a rescaled predictor on the
response surface of a basic SQD model? As a thought ex-
periment, imagine that explicit (E) and implicit (I) racial
attitudes are located on the same latent scale. Theory pre-
dicts that dissonance reduction behavior is a function of
implicit-explicit discrepancy – if both attitudes are congru-

ent, (E − I)2 = 0, no dissonance has to be reduced. The
larger the discrepancy is, the higher are the dissonance re-
duction efforts (cf. Briñol et al., 2006). Now imagine that
the manifest measure for the explicit attitude is biased to-
wards the politically correct answer: all participants answer
one scale point higher than their true explicit attitude E. The
observed measure now is E′ = E+1. In this case the outcome
variable still is minimized, but on a discrepancy score of 1,
(E′ − I)2 = 1.

Concerning the response surface, shifting the zero point of
one predictor by an additive constant C corresponds to a lat-
eral shift of the raw data away from the numerical LOC (see
Figure 2B). The ridge of the basic squared difference model,
however, is fixed to the numerical LOC. In such a case, the
basic model still tries to find the best fit to the data, which
will be a suboptimal fit (for an example, see Figure 2A).
Hence, every analysis which employs discrepancy scores as
predictors implicitly assumes that optimal fit is achieved at
numerical congruence, and therefore confounds two inde-
pendent concepts. Furthermore, statistical power is reduced
to actually detect a shifted fit pattern.

When using arbitrary metrics also the spread of the predic-
tor scales can be changed. If one of the predictors is rescaled
by multiplication with a scaling constant S , geometrically
the ridge is rotated away from the LOC (see Figure 2, panel
C and D). Again, the basic SQD model provides a bad fit to
the rotated and shifted data structure.

In the previous section, it has been stated that the choice
of center and scale is rather irrelevant for the unconstrained
polynomial model (except for interpretational reasons). Ba-
sic SQD models, in contrast, are highly dependent on the
correct choice of center and scale. Simply shifting the zero
point of one of the predictors can drive the statistical power
to detect any existing discrepancy effect to zero (cf., Irwin &
G. H. McClelland, 2001). The shift might be due to some bi-
ased self-insight, response tendencies induced by the framing
of the question (‘ideal’ vs. ‘actual’), or response tendencies
based on social norms. Given that numerous response biases
can selectively affect the numerical zero point of one of the
manifest predictor scales, hypothesis tests that are influenced
by such simple transformations indeed are questionable (see
also Blanton & Jaccard, 2006b).

To summarize, even if data follow a fit pattern on a latent
dimension, a researcher will have a low statistical power to
actually detect this pattern with a basic squared differences
approach when one of the measured variables represents a
rescaled version of the latent dimension.

The Proposed Solution: Turning Implicit Constraints
Into Testable Hypotheses

Several problems of the basic squared difference model
have been highlighted in the previous sections. First, the
model imposes a dimensional reduction, which loses the in-



6 SCHÖNBRODT

formation at which level of the predictors the squared dif-
ference was calculated. Second, optimal fit is constrained to
happen at numerical congruence, which means that a shifted
zero point or a rescaling of one of the predictors poses a se-
rious problem to the basic SQD model. In the following sec-
tions, new statistical models based on polynomial regression
are proposed that allow to test a fit pattern with incommen-
surable scales.

Modeling fit patterns with polynomial regression

Polynomial regression of the second degree can be used
to test empirical data for the presence of a fit pattern. Some,
but not all fit patterns can be described by a polynomial re-
gression. Likewise, only some, but not all polynomial re-
gressions satisfy the conditions for a fit pattern. Specifically,
any second-degree polynomial regression that has non-zero
quadratic terms with the same sign is an instantiation of the
weak fit pattern:

b3b5 > 0 (5)

For a strong fit pattern, regression weights have to follow
these constraints:

b1 = (b2b4)/2b5

b4 = 2
√

b3b5
(6)

(For a derivation of these constraints, see Appendix A.)
In order to test for a fit pattern with polynomial regres-

sion, additional assumptions have to be made: (1) The misfit
effect is symmetric relative to the ridge, (2) The misfit effect
follows a quadratic form, and (3) The projection of the ridge
on the X-Y plane has a linear form.

The last assumption implies that there exists a linear trans-
formation of one predictor variable which is able to shift
and/or rotate the ridge onto the numerical LOC. Addition-
ally, the general assumptions for multiple regression have to
be considered (e.g., Gelman & Hill, 2007).

Avoiding Overfitting and Testing Specific Assumptions:
Five New Fit Models That Extend the Basic Squared Dif-
ferences Model

Any polynomial regression result that satisfies the for-
mal conditions of a fit pattern can be seen as evidence for
a fit pattern. A potential criticism, however, could be that a
second-degree polynomial regression is prone to overfitting
(The weak fit pattern still has five degrees of freedom).

Therefore, in the following sections I propose five simpler
fit models that are nested under the full polynomial model,
but have fewer degrees of freedom. Furthermore, these mod-
els directly approach the problem of untested assumptions.
Three implicit constraints of the basic SQD model have been

identified, a) the assumption of no mean-level effect, b) the
problem of shifted zero points, and c) the problem of differ-
ent scale spread. The models developed in the following sec-
tions are based on a simple principle: Implicit constraints are
successively turned into testable hypotheses by adding new
parameters to the models. By adding the new parameters, the
models have a higher statistical power to detect a fit pattern if
the ridge is not located over the LOC. These new parameters
can be seen as a reparametrization of the general polynomial
model, which leads to a better interpretability of the results
and targeted hypothesis tests.

One family of nested models contains flat ridge models.
These models are derived by adding parameters to the basic
squared difference model (2), which allow the ridge to be
shifted (shifted squared difference model, SSQD) and addi-
tionally to be rotated (shifted and rotated squared difference
model, SRSQD). Therefore, these models are able to describe
flat fit patterns regardless of the choice of centering and scal-
ing of the predictors.

A second family of nested models can be derived by ad-
ditionally allowing the ridge to be tilted up- or downwards,
which transforms the assumption of a flat ridge (i.e., the as-
sumption of no mean-level effect) into a testable hypothe-
sis. The basic squared difference model with a tilted ridge
is called the rising ridge model (RR). Adding parameters
for shifting and rotating the surface leads to the shifted ris-
ing ridge (SRR) and shifted and rotated rising ridge model
(SRRR). Note that depending on the sign of the tilt and the
curvature of the surface these models can also be ‘rising
troughs’ or ‘descending ridges’, but for simplicity the label
‘rising ridge’ is used for all of these models.

Figure 3 shows how these models are nested within each
other and how many free parameters (k) are estimated in re-
lation to the intercept-only null model. All models are nested
in the full polynomial model, and all constrained models sat-
isfy the conditions for the weak fit pattern defined in (5). The
tree of these models can be viewed from two perspectives.
A bottom-up perspective would be to start with the basic
squared difference model (which has k = 1 free parameter)
and to increase model complexity by building additional pa-
rameters step-by-step into the model. A top-down perspec-
tive would be to start with the unconstrained second-degree
polynomial model (which has k = 5 free parameters) and to
impose an increasing number of constraints to arrive at each
reduced model. Equations on the arrows in Figure 3 describe
the testable constraint that is induced by each reduced model.

The following sections describe the parameters and con-
straints for these nested models.

The shifted squared difference model (SSQD model).
If one of the predictors is centered to another zero point,
the response surface is shifted laterally from the line of nu-
merical congruence (see Figure 2, panels A and B, and Fig-
ure 1B). In such a case, the shifted squared difference model
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can be formulated as:

Z = c0 + c1[(X + C) − Y]2 + e (7)

where C is a shifting constant applied to the X predictor.
Note that only a shift in one variable is necessary, as shifts in
both variables can be algebraically reduced to one.

Expanding equation (7) yields the following:

Z = c0+2c1CX−2c1CY+c1X2−2c1XY+c1Y2+c1C2+e (8)

For a direct comparison, the equation for the full polyno-
mial is reprinted:

Z = b0 + b1X + b2Y + b3X2 + b4XY + b5Y2 + e (9)

Comparing the coefficients of (8) with the full polynomial
model (9) reveals that following constraints are imposed: (1)
b2 = −b1, (2) b3 = b5, (3) b4 = −2b5. Constraints 2 and 3 are
the same as in the basic SQD model, and the shift of the ridge
can be controlled by diametrically opposed weights for X and
Y . After fitting the model, the amount of lateral shifting of
the ridge can be expressed in the scale of the X variable5:
C := b1/(2b3). As in the SQD model, a4 should be used for
formally testing the fit effect: a4 := b3 − b4 + b5 = 4b3.

It should be noted that in the absence of a specific hy-
pothesis about the shift of the ridge C (and the other derived
parameters) the results for these derived variables should be
treated as exploratory, awaiting cross-validation.

By fitting this model, the optimal shift of the zero point of
the X variable is performed. By definition, the SSQD model
describes surfaces with a perfectly flat ridge.

The shifted and rotated squared difference model
(SRSQD model). An implementation of arbitrary spreads
into the shifted squared difference model introduces an addi-
tional free parameter which can rotate the surface (see Figure
2, panels C and D). The model can be formulated as:

Z = c0 + c1[(S X + C) − Y]2 + e (10)

where S is a scaling factor applied to the X predictor (note
that again only a rescaling of one variable is necessary). Sim-
ilar to the SSQD model, the SRSQD model describes sur-
faces with a perfectly flat ridge.

The SRSQD model imposes the following constraints on
the parameters of equation (3): (1) b1 = (b2b4)/(2b5), (2)
b3 = b4/4b5. It is actually hard to attach a specific meaning
to these constraints. These constraints are algebraic conver-
sions of equations (10) and (3), and it may help to point out
that a polynomial regression with these specific constraints
simply is the more meaningful equation (10).

After fitting the model, the amount of lateral shifting can
be expressed in the scale of the X variable: C := − 1

2 (b2/b5).

The amount of rotation can be expressed as the scaling factor
for X: S := −b4/(2b5). After computing C and S , X can
be rescaled using these values: X′ = S X + C. This rescal-
ing would rotate and shift the surface such that the ridge is
exactly above the line of numerical congruence, and numeri-
cal congruence would predict an optimal outcome. Although
this transformation does not mean that commensurable scales
have been established, it can help to interpret the original
variables in relation to the outcome.

For unrotated surfaces, a4 is a direct measure for the misfit
effect. With rotated surfaces, one can directly compute which
value a4 would have if X would be rescaled:

a′4 := a4 × 4/(S + 1)2

:= b3/S 2 − b4/S + b5
(11)

In the case of rotated surfaces, a′4 is the relevant index that
tests for the presence of a misfit effect, as a4, which is above
the line of numerical incongruence, represents an arbitrary
cut that is not orthogonal to the ridge6.

The rising ridge model (RR). The basic squared dif-
ference model constrains the ridge of the response surface to
be flat. In order to make that contraint testable, the effect of
the mean level, M = (X + Y)/2, can be incorporated into the
model7:

Z = c0 + bM M + c1(X − Y)2 + e (12)

Note that the parameter bM denotes the effect of mean
level in all following rising ridge models. If bM is positive,
the ridge is tilted in a way that high/high combinations of
the predictors have a larger predicted response than low/low
combinations. The RR model imposes the following con-
straints on the parameters of the full polynomial model (3):
(1) b1 = b2, (2) b3 = b5, (3) b4 = −2b5. After fitting the
model, the mean effect can be computed as bM := b1 + b2.
For formally testing the fit effect, a4 should be used.

The shifted rising ridge model (SRR). Incorporating
a shifted ridge into the RR model leads to the shifted rising
ridge model, where variable X is shifted by value C and the
mean level of shifted X and Y is M = ((X + C) + Y)/2:

Z = c0 + bM M + c1((X + C) − Y)2 + e (13)

5The values of C, S , and bM are deterministic functions of the
regression weights b1 to b5 and are not free parameters which are
estimated. To highlight this relationship, the operator ‘:=’ is used
for values that are derived from the regression weights.

6For unrotated surfaces, a4 equals a′4
7An alternative parametrization of the second-degree polyno-

mial model, the Difference and Mean Model (DMM; A. Cohen,
Nahum-Shani, & Doveh, 2010) also directly models the mean level
effect and can be seen as the generalization of the more specific
rising ridge models proposed here.
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The following constraints are imposed on the full polyno-
mial model (3): (1) b3 = b5, and (2) b4 = −2b3. After fitting
the model, the mean effect can be computed as bM := b1 +b2.
The shift of the ridge can be computed as C := (b2−b1)/4b3.
For formally testing the fit effect, again a4 should be used.

The shifted and rotated rising ridge model (SRRR).
Finally, allowing the SRR model to rotate leads to the shifted
and rotated rising ridge model (SRRR), where the mean level
is M = ((S X + C) + Y)/2:

Z = c0 + bM M + c1((S X + C) − Y)2 + e (14)

The following constraint is imposed on the full polyno-
mial model (3): (1) b4 = −2

√
b3b5. Due to the square root

in the constraint, another constraint is implied: The equation
is not defined when b3b5 ≤ 0, which is exactly the condition
for a weak fit pattern. Hence, the SRRR model and all nested
models satisfy the condition of a weak fit pattern.

After fitting the model, the shift of the ridge can be com-
puted as as C := −(2b1b5 + b2b4)/(4b4b5), and the scaling
factor for X as S := −b4/(2b5). As in the SRSQD model,
the misfit effect is represented by the rescaled a4 parameter,
a′4 := a4 × 4/(S + 1)2 = b3/S 2 − b4/S + b5. The mean level
effect along the ridge can be computed as bM := b1/S + b2.

Strong and Weak Version of Fit Patterns

Rising ridge models only satisfy the conditions of the
weak fit pattern, but not he strong version, as the optimal val-
ues are not symmetric (i.e., if Xi is the optimal correspond-
ing value for Y j, then Y j will not be the optimal value for
Xi). This is due to the linear effect of mean level, which is
superimposed on the quadratic fit effect. Consider a rising
ridge model where the ridge is aligned on the line of numer-
ical congruence (RR model, see Figure 3). If you start on a
point on the ridge and increase one predictor variable a bit,
the response will increase due to the linear mean level effect,
although one moves away from the ridge. At higher incre-
ments, however, the quadratic misfit effect will be stronger
than the linear mean level effect and the response will decline
again. To summarize, the combination of mean level effect
and congruence effects leads to a violation of the fifth condi-
tion that defines the strong fit pattern. The flat ridge models,
in contrast, satisfy the conditions for a strong fit pattern.

Hypothesis Tests With Incommensurable Predictor
Scales

Commensurable scales allow tests that include compar-
isons of the predictor scales, such as ‘satisfaction is highest
when the actual travel time is one day more than the desired
travel time’. In general, with commensurable scales the shift
of the ridge C can be directly interpreted as ‘the outcome is
optimal when X is C units smaller than Y’. The rotation S
can be interpreted as ‘the outcome is optimal when Y equals

S times X’. With incommensurable scales, however, numer-
ical congruence has no semantic meaning and any statement
involving comparisons like ‘larger’, ‘smaller’, or ‘equal to’
is meaningless. Hence, even when the presence of a fit pat-
tern can be tested with any type of predictor scales, it has to
be clear that many hypotheses cannot be tested when incom-
mensurable scales are used.

Practical Considerations and an Empirical Example

In the following sections, I will consider practical ques-
tions on how to test fit patterns and demonstrate the usage
with an empirical example.

An R Package to Test For Fit Patterns

Along with this paper a package called RSA (Schönbrodt,
2015b) has been released for the R Statistical Environment
(R Core Team, 2014). This package automatically com-
putes the squared and interaction terms of the predictor vari-
ables, checks raw data for outliers according to the Bollen
and Jackman (1985) criteria, runs all models that have been
described in this paper, compares them via several indices
of model fit, and provides several functions for plotting the
results. The RSA package computes the models using a path
modeling approach with the package lavaan (Rosseel, 2012).
This approach allows imposing the non-linear constraints on
the parameters of the multiple regression. By default, re-
gression weights are estimated using maximum likelihood.
As squared and interaction terms necessarily introduce non-
normality to the data, by default robust standard errors (SEs)
are computed, which are robust against violations of the
normality assumption. Beyond these default settings, many
alternative estimation procedures and several methods for
computing the standard errors can be selected in the lavaan
package. See the lavaan documentation (Rosseel, 2012) for
details. Furthermore, bootstrapped confidence intervals and
p values can be computed for all regression coefficients, in-
dices of the response surface (such as the surface parame-
ter a4 and a′4), and the derived parameters of the constrained
models (C, S , and bM). Note that only the regression weights
b1 to b5 are estimated (along with the intercept). All other
indices are simply deterministic functions of the regression
weights and therefore are not free parameters of the model.
Furthermore, the constraints for the nested models effectively
reduce the number of free parameters to be estimated. The
number of free parameters that is actually estimated for each
model can be seen in Figure 3.

Model selection

When several candidate models are available for a data
set, one has to strike the right balance between underfitting
(i.e., the model has too few parameters to fit the data) and
overfitting (i.e., the model has too many parameters and starts
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to model the random noise). Both over- and underfitting re-
duce the replicability when the model is applied to a new data
set. Model selection procedures can help to identify the most
parsimonious model that neither has too few nor too many
parameters.

Nested models often are compared via a χ2 likelihood-
ratio test (LRT). For multimodel selection purposes, how-
ever, this test is not recommended (Burnham & Anderson,
2002, Ch. 1.4.3, 6.9.3), as LRT does not provide a coher-
ent framework for model selection. First, the appropriate α
level is not clear. Recommendations range from .01 to .15,
and others have argued that the α level should not be fixed
but rather a function of the sample size (Good, 1982). Sec-
ond, multiple testing is a problem if several, non-independent
models are to be compared. In the tree of nested models
(Figure 3) 25 potential LRTs can be computed, and there is
no principled theory how to rank the models based on these
tests. Third, non-nested models cannot be compared.

An additional index for model fit can be computed from
the underlying path modeling approach: The comparative fit
index (CFI). This index ranges from 0 to 1, and, as a rule of
thumb, values >= .95 are considered as a relatively good fit
(Hu & Bentler, 1999). However, this index only indicates un-
derfitting (i.e., when the model has too few parameters), and
therefore cannot serve as the only index for model selection.

Due to the shortcomings of these indices of model fit, I
mainly focus on the corrected Akaike Information Criterion
(AICc)8 for model comparisons of the proposed fit patterns.
This index is able to compare nested and non-nested models,
and provides a coherent theory of model selection (Burnham
& Anderson, 2002; Burnham, Anderson, & Huyvaert, 2011).
AICc is a fit index that balances the complexity of a model
with its predictive accuracy, and therefore is sensitive both
for over- and underfitting. Generally, the model with the
smallest AICc is considered the best model. The absolute
size of AICc cannot be interpreted, as it depends on arbi-
trary constants in the calculation. The relevant measure is
the difference in AICc, ∆AICc, between any two models. As
a general rule of thumb, it has been suggested that a ∆AICc
< 2 indicates that both models are essentially equally good,
and that models with ∆AICc < 7 compared to the best model
still have some support and should probably not be rejected
yet. If ∆AICc is larger than 10, then the model is considered
to be implausible compared to the best model (Symonds &
Moussalli, 2011; Burnham et al., 2011).

For a better interpretation of the AICc differences, the
∆AICc can be transformed into model weights and evidence
ratios. The model weight (also called ‘Akaike weight’; Burn-
ham & Anderson, 2002) can be interpreted as the probabil-
ity that this model is the best model of the set of candidate
models, given the data (Wagenmakers & Farrell, 2004). Fur-
thermore, one can compute the ratio of the weights of two
models, which gives the evidence ratio. An evidence ratio of

2.5 between the best and the second-best model, for example,
indicates that the better model is 2.5 times more likely than
the other model.

When model selection is based on AICc, one should bear
in mind that this only gives an index for the relative, but
not absolute, plausibility of models. Even if all models are
completely implausible, either theoretically or statistically,
AICc will still select one ‘best’ model (Symonds & Mous-
salli, 2011). Hence, after selecting the best model via AICc,
the absolute performance of the model should be evaluated.
This can be done with R2

ad j, which is a useful descriptive
statistic, but should not be used for model selection by itself
(Burnham & Anderson, 2002; McQuarrie & Tsai, 1998).

An Empirical Example

The data analyzed in the following example are a subset
from a study of motives in families (Schönbrodt, 2012). An
increasing amount of publications investigates the effect of
a misfit of explicit and implicit motives on stress symptoms
and well-being (e.g., Baumann et al., 2005; Hagemeyer et al.,
2013; Schüler, Job, Fröhlich, & Brandstätter, 2008; Brun-
stein, Schultheiss, & Grässmann, 1998; Hofer & Chasiotis,
2003; Hofer, Chasiotis, & Campos, 2006; Kazén & Kuhl,
2011; Kehr, 2004). The basic hypothesis is that a misfit
between explicit motives (i.e., what you consciously strive
for) and implicit motives (i.e., what gives you affective re-
wards) leads to impaired well-being (D. C. McClelland et al.,
1989)9.

This fit hypothesis is tested for the affiliation domain in
the current data set. The implicit affiliation/intimacy mo-
tive (IM) of 362 persons was assessed by scoring the con-
tent of fantasy stories written to six ambiguous picture stim-
uli (Schultheiss & Pang, 2007; Winter, 1991). Raw motive
scores ranged from 0 to 12 (M = 4.08, SD = 2.13). The
number of coded motive scores partly depends on the length
of the story, because in this particular coding system each
sentence can be coded for the presence or absence of motive
imagery. Hence, as longer stories tend to have higher scores,
we computed density scores (i.e., motive scores per 1000
words) (Schultheiss & Pang, 2007) for subsequent analyses.

8In comparison to the classical AIC, AICc (Hurvich & Tsai,
1989) corrects for a bias when the sample size is small compared
to the number of model parameters. When sample size increases,
AICc converges to AIC.

9When reading the verbal models on implicit-explicit motive
congruency literally it seems they only make explicit statements
about the incongruent cases, without directly referring to the con-
gruent counterparts. But from the overall reading of the literature
it seems clear to me that the negative effects are seen in relation
to the congruent alternative. Furthermore, nowhere a differentia-
tion between low-, medium-, and high-level congruence is given, so
without further qualification implicit-explicit congruence should be
equally beneficial on any level of the trait.
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The explicit intimacy motive (EM) was assessed using a Lik-
ert scale (Schönbrodt & Gerstenberg, 2012) ranging from 0
to 5 (M = 3.62, SD = 0.79). The explicit motive score was
uncorrelated to the implicit motive score (r = .02). As an
indicator of well-being, the Valence scale from the PANAVA
inventory (Schallberger, 2005) has been assessed on a Likert
scale ranging from 0 to 6 (M = 4.19, SD = 1.21). Higher
values indicate more positive valence. (Actually, the data set
has a multilevel structure with persons nested in families. For
simplicity, this is ignored in the following demonstration.)
Due to the different measurement methods, the scales for the
implicit and the explicit motive do not have a common metric
or a meaningful zero point. For an easier interpretation, all
variables have been z-standardized to the sample mean and
standard deviation.

In the following analyses, this data set will be analyzed
for the presence of a fit pattern. In a confirmatory fashion we
expected that a misfit of motives would lead to less positive
valence. Additionally, a mean-level effect is explored, as fit
on a high motive level could be associated with higher levels
of well-being than fit on a low level (e.g., Hofer, Busch, &
Kärtner, 2010). Due to the incommensurability of the pre-
dictor scales the numerical line of congruence and the nu-
merical line of incongruence are meaningless. Therefore the
ridge of a possible fit pattern could be shifted and/or rotated
away from the line of numerical congruence. The employed
models allow such a shift to find the optimal combinations
of predictor variables, but the shift cannot meaningfully be
interpreted.

By default, the main function of the RSA package calcu-
lates all models displayed in Figure 3, along with a model
with two main effects only (X + Y) and an interaction model
(X + Y + XY). No multivariate outliers have been detected
using the criteria of Bollen and Jackman (1985) and the
quantile-quantile plot of the residuals of the final model did
not show strong violations of the normality assumption10.

Model selection in the example data set. A detailed
table of model indices is shown in Table 1. The best model
according to AICc is the SRRR model with a model weight
of .27, and the SRR and SRSQD model share the second
place with a model weight of .17 each. The full polynomial
also is in the range of equally plausible models with ∆AICc
< 2, with a model weight of .15.

Inspecting the other fit indices also indicates that the
SRRR model is a good choice. Its CFI is 1, and all mod-
els simpler than the SRRR have a CFI < .87. Furthermore,
the χ2-LR test indicates that it is not significantly worse than
the full polynomial model (∆χ2(1) = 0.90, p = .343), and the
adjusted R2 is the highest of all models. Taken the overall
evidence together, it seems reasonable to conclude that the
SRRR model is the most parsimonious and best-fitting model
for this data set.

Parameter estimates. Table 2 shows the estimated re-
gression parameters for the unconstrained polynomial model
(upper part) and the regression weights and the derived sur-
face parameters of the SRRR model (lower part). Further-
more, robust standard errors, percentile bootstrapped CIs,
and p values (10,000 replications) are reported. The com-
bined impact of the raw regression coefficients b1 to b5 may
be difficult to interpret, but a direct and meaningful interpre-
tation of the surface parameters can be given. For rotated sur-
faces, the crucial test of the fit hypothesis is the CI and the
p value of the curvature orthogonal to the ridge, expressed
by a′4 = -0.384, 95% bootstrapped CI [-0.658; -0.135], boot-
strapped p < .001. As the surface is significantly bent down
orthogonal to the ridge, the motive fit hypothesis is supported
in the current example: Increasing misfit leads to increas-
ingly impaired well-being.

Further conclusions can be drawn from the other param-
eters of the SRRR model. The parameter for the rotation of
the ridge, S , does not significantly differ from an unrotated
ridge where S would be 1 (bootstrapped p = .081; note that
the p value for S tests H0 : S = 1). Likewise, the parameter
for the mean-level effect, bM , is not significantly different
from a flat ridge (bootstrapped p = .077). Still, according to
the AICc criterion, the rotation and the slope of the ridge still
add a little bit to the model’s quality as the SRRR model is
1.57 times more likely than its unrotated counterpart (SRR)
and 1.59 times more likely than its flat counterpart (SRSQD).
The lateral shift of the ridge C, in contrast, passed the sig-
nificance threshold (bootstrapped p = .031). But whenever
predictor scales are incommensurable, any deviation of the
ridge from the LOC, which is indicated by C and S , cannot
be interpreted in terms of semantic congruence.

Figure 4 shows a visualization of the final SRRR model as
a 3d plot (panel A) and as a contour plot (panel B). Gener-
ally, one should only interpret regions of the surface that are
in the range of the original data. The surface plot tempts to
focus on the corners, which often are very salient due to an
pronounced upward or downward bend. These corners, how-
ever, usually are extrapolations of the surface into regions
where no actual observations exist, and this extrapolation
rests on very unlikely assumptions (Montgomery, Peck, &
Vining, 2012). Hence, I strongly recommend to always show
the raw data imposed on the surface plot or on the floor of
the 3d cube, and to interpret the surface only in regions where
actual data exists (see also Wilkinson & Task Force on Statis-
tical Inference, 1999; Tufte, 2001). In Figure 4, additionally

10Traditionally, the necessity of the squared terms has been tested
using LRTs. Removing the squared terms in the current data leads
to a significantly worse fit (∆χ2(2) = 7.74, p = .021; CFI = .60;
∆AICc = 3.3). However, it is strongly recommend to use one
paradigm (model selection via AICc) or the other (LRT), but not
mixing them in the same analysis (Burnham et al., 2011). As de-
scribed above, I focus on AICc here.
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Table 1
Model Comparison for the Empirical Example, Ordered by ∆AICc

Model k AICc ∆AICc
Model
weight

Evidence
ratio

CFI R2 pmodel R2
ad j

SRRR 4 7030.50 0.00 .27 1.00 0.048 .002 0.037
SRR 3 7031.41 0.90 .17 1.57 0.87 0.040 .002 0.032
SRSQD 3 7031.44 0.93 .17 1.59 0.86 0.040 .002 0.032
Full polynomial 5 7031.68 1.18 .15 1.80 1.00 0.050 .003 0.037
SSQD 2 7032.71 2.21 .09 3.02 0.69 0.031 .003 0.026
RR 2 7033.48 2.98 .06 4.43 0.64 0.029 .005 0.024
SQD 1 7034.32 3.82 .04 6.75 0.50 0.021 .005 0.019
X + Y + XY 3 7034.97 4.47 .03 9.34 0.60 0.031 .011 0.022
null 0 7040.12 9.62 .00 122.50 0.00 0.000 0.000
X + Y 2 7042.22 11.72 .00 350.73 0.00 0.005 .384 0.000

Note. k = Number of parameters; AICc = corrected Akaike Information Criterion; Evidence ratio = Ratio of model weights
of the best model compared to each other model; CFI = Comparative fit index; R2 = variance explained of the model; pmodel

= p value for explained variance of the model; R2
ad j = adjusted R2.

Model abbreviations (see also Figure 3): SRRR = Shifted and rotated rising ridge model; SRR = Shifted rising ridge model;
RR = Rising ridge model; SRSQD = Shifted and rotated squared difference model; SSQD = Shifted squared difference
model; SQD = Squared difference model; X +Y = Model with two linear main effects; X +Y + XY = Moderated regression;
null = Intercept-only model.

Table 2
Regression Coefficients b1 to b5 and Derived Model Parameters for the Full Polynomial
and the Shifted and Rotated Rising Ridge (SRRR) Model.

Model Estimate robust SE 95% CI (lower) 95% CI (upper) p

Full polynomial
b1 0.106 0.058 −0.010 0.221 .071
b2 −0.036 0.058 −0.145 0.084 .554
b3 −0.014 0.021 −0.055 0.042 .585
b4 0.146 0.044 0.055 0.253 .003
b5 −0.089 0.038 −0.161 −0.011 .023

SRRR Model
b1 0.126 0.056 0.019 0.236 .023
b2 −0.041 0.057 −0.151 0.072 .481
b3 −0.031 0.013 −0.064 −0.010 <.001
b4 0.109 0.023 0.051 0.170 .004
b5 −0.096 0.036 −0.164 −0.034 <.001
C −0.684 0.242 −1.379 −0.085 .031
S 0.566 0.187 0.291 1.087 .081
bM 0.181 0.098 −0.023 0.413 .077
a′4 −0.384 0.145 −0.658 −0.135 <.001

Note. SRRR Model = Shifted and Rotated Rising Ridge Model. The p values test for the H0 that the
parameter is zero. The only exception is the S parameter, where the p value tests the H0 : S = 1.
Confidence intervals and p values are derived from a percentile bootstrap with 10,000 replications.
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Figure 4. 3d and contour plot of the SRRR response surface
of the empirical example.

a bagplot around the raw data points is projected onto the
surface to give an additional visual aid for the ‘interpretable
region’. The bagplot (Rousseeuw, Ruts, & Tukey, 1999) is
a bivariate extension of a boxplot, which describes the po-
sition of the inner 50% of points (the inner polygon, called
bag) and separates outliers from inliers (the outer polygon,
called fence).

To summarize, this example showed how the new models
can be employed to test fit patterns with incommensurable
scales. Even if one takes the considerable model uncertainty
in the current example into account, there is quite strong evi-
dence for a motive misfit pattern: All models in the candidate
set (i.e., models with ∆AICc < 2) have a significant a4, re-

spectively a′4 parameter. Concerning the rising ridge and the
rotation, however, the evidence is not conclusive yet. The ap-
plied model selection procedure shows a slight preference for
a tilted and rotated ridge. Based on the current data, however,
models with a flat or unrotated ridge cannot be discarded yet,
which is also reflected in the wide CIs of the corresponding
parameters.

The data set is included in the RSA package, and a full
script of the analyses is in Appendix B. Hence, readers can
reproduce all results and plots reported here. For additional
features of the RSA package, please consult Schönbrodt
(2015a).

Discussion

Building upon the pioneering work of Edwards (1994,
2001, 2002), this paper extends existing polynomial regres-
sion techniques, and proposes a rationale and statistical mod-
els to test fit patterns with incommensurable scales.

Every research paper using absolute or squared difference
scores relies on the usually unrealistic assumptions that both
predictors are on the same numeric scale, that the optimal
fit is exactly on the line of numerical congruence, and that
there is no effect of the mean level. Whenever one of these
assumptions is violated, the basic discrepancy models have a
deficient fit to the data and therefore a low statistical power
to detect existing fit patterns.

These constraints should be treated as hypotheses that can
be tested empirically with polynomial regression. The pro-
posed extensions of the basic SQD model give researchers
the opportunity to appropriately test fit patterns without hav-
ing to rely on unrealistic assumptions. In some cases, the
more complex models will be reduced to the basic squared
difference model. In many cases, however, the proposed
models will improve the fit, and in some cases apparent null
results will become significant. The new models can give
further insights into the relationships of the variables, as they
can directly test specific hypotheses and allow for more com-
plex relationships like rising ridge. The reparametrizations
of the general polynomial model are statistically simpler and
conceptually more meaningful, as the parameters C, S , and
bM can be directly interpreted in terms of a shift, a rotation,
and a tilt of the surfaces’ ridge. Located at different levels
of model complexity, the new models allow to balance com-
plexity and parsimony.

Limitations

Polynomial regression and the proposed models are not
without limitations. First, as pointed out in the introduc-
tion, the method is limited to situations where discrepancy
scores serve as predictors. If these scores are used as out-
come variables, other approaches have to be taken (Edwards,
1995). Second, as the equations and the RSA package work
with manifest variables, it is assumed that the variables are
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assessed without measurement error. Cheung (2009) devel-
oped the Latent Congruence Model, which allows to test di-
rected congruence hypotheses on a latent level, but only in-
cludes linear (but not squared or interaction) effects. So far,
no consensus has been achieved on how to model latent in-
teractions or latent quadratic terms (e.g., Klein & Moosbrug-
ger, 2000; Mooijaart & Bentler, 2010; Harring, Weiss, &
Hsu, 2012). Once these technical issues are resolved, how-
ever, there are no principal objections against latent mod-
eling of polynomial surfaces. Third, a potential problem
of polynomial regression is its susceptibility to outliers, as
the squared terms exaggerate outliers even more. Therefore
it is strongly recommended to inspect raw data for influen-
tial points and outliers (Bollen & Jackman, 1985; Wilcox,
2012). Fourth, polynomial regression (of second degree) is
restricted to symmetric fit patterns. That means, ‘too much’
of something is constrained to have the same impact as ‘too
less’. Asymmetric fit patterns could be modeled by a polyno-
mial of the third degree, but this implies fitting a large num-
ber of parameters (nine parameters compared to five in the
second-degree polynomial), which bears the danger of over-
fitting even more. Hence, constrained third-degree models
should be developed which test specific asymmetric hypothe-
ses with fewer parameters. As another alternative, piecewise
regression techniques (also known as segmented regression)
can be used to model asymmetric fit patterns, which allows
the regression line to take different slopes on each side of the
breakpoint (e.g., Frost & Forrester, 2013). Readers interested
in these models can refer to Keele (2008). Recent piecewise
regression techniques can also search for the optimal break-
point (Beem, 1995; Muggeo, 2003) and therefore are able to
adjust for shifted zero points, but, to my knowledge, there is
no solution yet for adjusting the spread of the scales. Finally,
I want to point out once more that incommensurable predic-
tors retrict the range of testable hypotheses compare to com-
mensurable predictors. Data can be tested for the presence
of fit patterns, but any hypothesis involving comparisons be-
tween the predictors principally cannot be tested.

Conclusions

The usage of discrepancy scores as predictor variables has
been a topic of long debates. The introduction of response
surface analysis into psychological science removed many
of the problems surrounding difference scores. In this paper,
the concept of fit patterns was introduced, which provides the
theoretical base for testing fit hypotheses with incommen-
surable scales. New statistical models, namely the shifted
(and rotated) squared difference models and their extensions
with rising ridges, extend the statistical toolbox and enable
researchers to test fit hypotheses without having to rely on
unrealistic assumptions. These models have a higher statis-
tical power to detect actual fit patterns and provide easily in-
terpretable parameters. With these tools, new classes of hy-

potheses can be tested which would be hard or impossible to
test with conventional methods. Finally, a new open-source
software provides user-friendly functions which hopefully
make polynomial regression methodology more accessible
to researchers from a wide range of scientific fields.
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Appendix A
Conditions for Weak and Strong Fit Patterns

Constraints for the general polynomial model can be derived
in order to identify models which satisfy the conditions for
a fit pattern. The first and second condition of the weak fit
pattern state that for each Xi there is a single optimal value
Y j which maximizes/minimizes the response variable Z, and
vice versa. Every vertical cut through the surface of a two-
variable second-degree polynomial has the functional form
of a parabola. Hence, for each X and each Y there is a single
maximum/minimum point, as long as the regression weights
for the quadratic terms are not zero: b3 , 0, and b5 , 0.
Furthermore, the quadratic terms must have the same sign,
otherwise the optimal response for Xi would be the the worst
response for Y j. All these conditions can be summarized in
one inequality:

b3b5 > 0 (15)

The third and fourth condition, which state that
greater deviations from the optimal point have greater impact
on the response than smaller deviations, is automatically sat-
isfied by the general functional form of the parabola, as the
response changes quadratically on both sides of the vertex.

To summarize, all polynomial regressions which fol-
low inequality (15) satisfy the conditions for a weak fit pat-
tern. This inequality condition is implicitly present in the
constraint for the SRRR model, which is b4 = −2

√
b3b5.

As the square root is only defined when (15) is satisfied, all
SRRR models follow the weak fit pattern. Furthermore, as all
constraints are passed down to nested models (Bollen, 1989),
it can be concluded that all constrained models depicted in
Figure 3 are instantiations of the weak fit pattern.

The condition for a strong fit pattern states that the
optimal matches between X and Y values must be symmet-
ric. The values Yopt.i where Z is maximal for a given Xi can
be derived by setting the first derivative with respect to Y to
zero:
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dX
dY

= b2 + b4X + 2b5Y = 0 (16)

Similarly, the values Xopt. j where Z is maximal for a
given Y j can be derived by setting the first derivative with
respect to X to zero:

dY
dX

= b1 + 2b3X + b4Y = 0 (17)

Rearranging these equation leads to point-intercept
equations describing the maximum lines on the X-Y-plane:

Y = −
b2

2b5
−

b4

2b5
X

Y = −
b1

b4
−

2b3

b4
X

(18)

The condition for a strong fit pattern can be reformu-
lated as that the maximum line for X is identical to the max-
imum line of Y . Equating the equations of (18) gives two
constraints on polynomial regressions in order to satisfy the
strong fit pattern: (1) b1 = (b2b4)/2b5, for equal intercepts,
and (2) b4 = 2

√
b3b5, for equal slopes.

The constraint for equal slopes is identical to the sin-
gle constraint of the SRRR model. Hence, all constrained
models shown in Figure 3 have equal slopes of the maxi-
mum lines. The constraint for identical intercepts is identical
to one of the constraints of the SRSD model. Hence, all flat
ridge models (i.e., SRSD, SSQD, and SQD) satisfy the con-
ditions for a strong fit pattern.

Appendix B
Installing R and the RSA Package, Demo script

First, the R base system has to be installed. Installation files
for R can be obtained from http://cran.r-project.org/ and are
provided for all major operating systems (Windows, Mac
OS, Linux). Detailed instructions for installation can be ob-
tained from the R website (http://www.r-project.org). The
R installation provides the base system and basic packages
for standard statistical analyses such as multiple regression,
ANOVAs, or factor analyses. There are, however, numer-
ous additional packages with new functions, such as the RSA
package. To install RSA, one has to launch the R console
and to type install.packages("RSA"). R will automati-
cally download the necessary files, and installs the package
to your system. The RSA package relies on some other pack-
ages which will be automatically installed on the system as
well. After installation, the RSA package can be loaded into
the current R session by typing library(RSA). Typing ?RSA
opens the help file for the main function, in which also links
to help files for other functions can be found.

Following script loads the built-in data set and per-
forms all analyses shown in this paper. For the following

script, it is assumed that the raw data is loaded into a data
frame with the name motcon2. The variables of interest
are called IM (implicit affiliaiton/intimacy motive), EM (ex-
plicit intimacy motive), and VA (affective valence). Response
surface analysis can be run with a single line of code: r1
<- RSA(VA ∼ IM*EM, data=motcon2). This command
evokes the main function RSA and defines the variables to
be used from the data frame motcon2. The first parameter,
VA ∼ IM*EM, follows R’s formula style and is read as ‘VA
is a function of IM and EM’ and defines the outcome and the
predictor variables. The result of the RSA function is stored
in a new object named r1.

By default, the RSA function estimates all models dis-
played in Figure 3 (absolute difference models and additional
models can be computed on request). Summary information
of the results can be obtained with summary(r1). A
detailed table of model comparisons can be printed with the
command aictab(r1) (cf. Table 1). A detailed look on the
parameters of a specific model (e.g., the SRRR model) can be
obtained with: getPar(r1, "coef", model="SRRR").
Bootstrapped standard errors and CIs can be computed
with the following commands: c1 <- confint(r1,
model="SRRR", method="boot", R=10000) (Boot-
strapped CIs are only computed for the final model as the
procedure takes several minutes for each model). Finally,
the model can be visualized using the plot command:
plot(r1, model="SRRR", xlab="Implicit motive",
ylab="Explicit motive", zlab="Affective
valence", type="3d") (see Figure 4).

The full analysis presented in this paper can be done
with the following script:

## lines beginning with # are comments

# if not already done:
# install the RSA package
# (only has to be done once)
# install.packages("RSA")

# load the RSA package for
# the active session
library(RSA)

# open the help page
?RSA

## Motive congruency example
# load the built-in data set
data(motcon2)

# Compute the RSA and store the result into
# the new variable r1
r1 <- RSA(VA ~ IM*EM, data=motcon2)

# Show summary of the RSA
summary(r1)
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# Confidence intervals with robust standard errors
CI.full <- confint(r1, model="full")
CI.SRRR <- confint(r1, model="SRRR")

# Percentile bootstrap CIs and p values
# This takes several minutes
CI.boot.full <- confint(r1, model="full",

method="boot", R=10000,
parallel="multicore", ncpus=4)

CI.boot.SRRR <- confint(r1, model="SRRR",
method="boot", R=10000,
parallel="multicore", ncpus=4)

# Table with model comparisons
a1 <- aictab(r1, plot=TRUE)
print(a1)

# Show all RSA parameters of the final model
# with robust SEs, p values, and CIs
getPar(r1, "coef", model="SRRR")

## Plot the final model
# for information on the several options,
# see ?plotRSA

# 3d plot
plot(r1, axes="PA1", model="SRRR",
project=c("points", "PA1", "LOC", "LOIC", "hull"),
points=FALSE, xlim=c(-3.1, 3.1), ylim=c(-3.1, 3.1),
param=FALSE, legend=FALSE, bw=TRUE,
pal.range="surface", pal="flip",
xlab="Implicit motive", ylab="Explicit motive",
zlab="Affective valence")

# contour plot
plot(r1, points=TRUE, model="SRRR", axes="PA1",
xlim=c(-3.1, 3.1), ylim=c(-3.1, 3.1), showSP=FALSE,
legend=TRUE, bw=TRUE, pal.range="surface", pal="flip",
xlab="Implicit motive", ylab="Explicit motive",
zlab="Affective valence", type="contour")

## Additional functions

# interactive, rotatable 3d plot
plot(r1, model="SRRR", type="interactive")

# open an interactive widget with control
# sliders for regression weights
demoRSA()
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Figure 1. Three examples of response surface plots. (A) Basic squared differences model, (B) Shifted squared differences
model, shifted by C = 0.75 units of the X axis, (C) Travel time example from Edwards (2002).
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fixed on the X=Y line, and has an R2 of 47% (panel A), respectively 14% (panel C). The shifted squared difference model
(SSQD; panel B) and the shifted and rotated squared difference model (SRSQD; panel D) have an R2 of 99%.
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